483 research outputs found

    European climate response to tropical volcanic eruptions over the last half millennium

    Get PDF
    We analyse the winter and summer climatic signal following 15 major tropical volcanic eruptions over the last half millennium based on multi-proxy reconstructions for Europe. During the first and second post-eruption years we find significant continental scale summer cooling and somewhat drier conditions over Central Europe. In the Northern Hemispheric winter the volcanic forcing induces an atmospheric circulation response that significantly follows a positive NAO state connected with a significant overall warm anomaly and wetter conditions over Northern Europe. Our findings compare well with GCM studies as well as observational studies, which mainly cover the substantially shorter instrumental period and thus include a limited set of major eruptions

    Thank You to Our 2018 Peer Reviewers

    Get PDF
    On behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union (AGU), and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2018. Reviews of Geophysics is the top rated journal in Geophysics and Geochemistry and it could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate the time spent reading and commenting on manuscripts, and we are very grateful for your willingness and readiness to serve in this role. Reviews of Geophysics published 20 review papers and an editorial in 2018, covering most of the AGU Section topics, and for this we were able to rely on the efforts of 85 dedicated reviewers from 20 countries. Many reviewers answered the call multiple times. Thank you again. We look forward to a 2019 of exciting advances in the field and communicating those advances to our community and to the broader public

    Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Get PDF
    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid-A nd high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM

    Appreciation of Peer Reviewers for 2017

    Get PDF
    On behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union, and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2017. The journal could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate all that you do, and we are very grateful for your willingness and readiness to serve in this role.Plain Language SummaryOn behalf of the authors and readers of Reviews of Geophysics, the American Geophysical Union, and the broader scientific community, the Editors wish to wholeheartedly thank those who reviewed the manuscripts for Reviews of Geophysics in 2017. The journal could not exist without your investment of time and effort, lending your expertise to ensure that the papers published in this journal meet the standards that the research community expects for it. We sincerely appreciate all that you do, and we are very grateful for your willingness and readiness to serve in this role. Reviews of Geophysics published 29 review papers, a commentary and an editorial in 2017, covering most of the AGU Section topics, and for this we were able to rely on the efforts of 99 dedicated reviewers. Many reviewers answered the call multiple times. Thank you again. We look forward to a 2018 of exciting advances in the field and communicating those advances to our community and to the broader public.Key PointThe Reviews of Geophysics Editors thank all the peer reviewers from 2017Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147789/1/rog20174.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147789/2/rog20174_am.pd

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    No full text
    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 yr−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set

    The Potential Impact of Nuclear Conflict on Ocean Acidification

    Get PDF
    We demonstrate that the global cooling resulting from a range of nuclear conflict scenarios would temporarily increase the pH in the surface ocean by up to 0.06 units over a 5-year period, briefly alleviating the decline in pH associated with ocean acidification. Conversely, the global cooling dissolves atmospheric carbon into the upper ocean, driving a 0.1 to 0.3 unit decrease in the aragonite saturation state (Ωarag) that persists for ∼10 years. The peak anomaly in pH occurs 2 years post conflict, while the Ωarag anomaly peaks 4- to 5-years post conflict. The decrease in Ωarag would exacerbate a primary threat of ocean acidification: the inability of marine calcifying organisms to maintain their shells/skeletons in a corrosive environment. Our results are based on sensitivity simulations conducted with a state-of-the-art Earth system model integrated under various black carbon (soot) external forcings. Our findings suggest that regional nuclear conflict may have ramifications for global ocean acidification

    Political risk in light rail transit PPP projects

    Get PDF
    Since 2003 public-private partnerships (PPPs) have represented between 10 and 13.5% of the total investment in public services in the UK. The macro-economic and political benefits of PPPs were among the key drivers for central government's decision to promote this form of procurement to improve UK public services. Political support for a PPP project is critical and is frequently cited as the most important critical success factor. This paper investigates the significance of political support and reviews the treatment of political risk in a business case by the public sector project sponsor for major UK-based light rail transit PPP projects during their development stage. The investigation demonstrates that in the early project stages it is not traditional quantitative Monte Carlo risk analysis that is important; rather it is the identification and representation of political support within a business case together with an understanding of how this information is then used to inform critical project decisions

    Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)

    Get PDF
    Farmers around the world time the planting of their crops to optimize growing season conditions and choose varieties that grow slowly enough to take advantage of the entire growing season while minimizing the risk of late-season kill. As climate changes, these strategies will be an important component of agricultural adaptation. Thus, it is critical that the global models used to project crop productivity under future conditions are able to realistically simulate growing season timing. This is especially important for climate- and hydrosphere-coupled crop models, where the intra-annual timing of crop growth and management affects regional weather and water availability. We have improved the crop module of the Community Land Model (CLM) to allow the use of externally specified crop planting dates and maturity requirements. In this way, CLM can use alternative algorithms for future crop calendars that are potentially more accurate and/or flexible than the built-in methods. Using observation-derived planting and maturity inputs reduces bias in the mean simulated global yield of sugarcane and cotton but increases bias for corn, spring wheat, and especially rice. These inputs also reduce simulated global irrigation demand by 15 %, much of which is associated with particular regions of corn and rice cultivation. Finally, we discuss how our results suggest areas for improvement in CLM and, potentially, similar crop models.</p
    • …
    corecore