6,523 research outputs found

    Enhanced Risk Aversion, But Not Loss Aversion, in Unmedicated Pathological Anxiety.

    Get PDF
    BACKGROUND: Anxiety disorders are associated with disruptions in both emotional processing and decision making. As a result, anxious individuals often make decisions that favor harm avoidance. However, this bias could be driven by enhanced aversion to uncertainty about the decision outcome (e.g., risk) or aversion to negative outcomes (e.g., loss). Distinguishing between these possibilities may provide a better cognitive understanding of anxiety disorders and hence inform treatment strategies. METHODS: To address this question, unmedicated individuals with pathological anxiety (n = 25) and matched healthy control subjects (n = 23) completed a gambling task featuring a decision between a gamble and a safe (certain) option on every trial. Choices on one type of gamble-involving weighing a potential win against a potential loss (mixed)-could be driven by both loss and risk aversion, whereas choices on the other type-featuring only wins (gain only)-were exclusively driven by risk aversion. By fitting a computational prospect theory model to participants' choices, we were able to reliably estimate risk and loss aversion and their respective contribution to gambling decisions. RESULTS: Relative to healthy control subjects, pathologically anxious participants exhibited enhanced risk aversion but equivalent levels of loss aversion. CONCLUSIONS: Individuals with pathological anxiety demonstrate clear avoidance biases in their decision making. These findings suggest that this may be driven by a reduced propensity to take risks rather than a stronger aversion to losses. This important clarification suggests that psychological interventions for anxiety should focus on reducing risk sensitivity rather than reducing sensitivity to negative outcomes per se

    Anxiety promotes memory for mood-congruent faces but does not alter loss aversion

    Get PDF
    Pathological anxiety is associated with disrupted cognitive processing, including working memory and decision-making. In healthy individuals, experimentally-induced state anxiety or high trait anxiety often results in the deployment of adaptive harm-avoidant behaviours. However, how these processes affect cognition is largely unknown. To investigate this question, we implemented a translational within-subjects anxiety induction, threat of shock, in healthy participants reporting a wide range of trait anxiety scores. Participants completed a gambling task, embedded within an emotional working memory task, with some blocks under unpredictable threat and others safe from shock. Relative to the safe condition, threat of shock improved recall of threat-congruent (fearful) face location, especially in highly trait anxious participants. This suggests that threat boosts working memory for mood-congruent stimuli in vulnerable individuals, mirroring memory biases in clinical anxiety. By contrast, Bayesian analysis indicated that gambling decisions were better explained by models that did not include threat or treat anxiety, suggesting that: (i) higher-level executive functions are robust to these anxiety manipulations; and (ii) decreased risk-taking may be specific to pathological anxiety. These findings provide insight into the complex interactions between trait anxiety, acute state anxiety and cognition, and may help understand the cognitive mechanisms underlying adaptive anxiety

    The orientation-preserving diffeomorphism group of S^2 deforms to SO(3) smoothly

    Full text link
    Smale proved that the orientation-preserving diffeomorphism group of S^2 has a continuous strong deformation retraction to SO(3). In this paper, we construct such a strong deformation retraction which is diffeologically smooth.Comment: 16 page

    Synthesis of Subject-Specific Human Balance Responses using a Task-Level Neuromuscular Control Platform

    Get PDF
    Many activities of daily living require a high level of neuromuscular coordination and balance control to avoid falls. Complex musculoskeletal models paired with detailed neuromuscular simulations complement experimental studies and uncover principles of coordinated and uncoordinated movements. Here, we created a closed-loop forward dynamic simulation framework that utilizes a detailed musculoskeletal model (19 degrees of freedom, and 92 Muscles) to synthesize human balance responses after support-surface perturbation. In addition, surrogate response models of task-level experimental kinematics from two healthy subjects were provided as inputs to our closedloop simulations to inform the design of the task-level controller. The predicted muscle EMGs and the resulting synthesized subject joint angles showed good conformity with the average of experimental trials. The simulated whole-body center of mass displacements, generated from a single kinematics trial per perturbation direction, were on average, within 7 mm (anterior perturbations) and 13 mm (posterior perturbations) of experimental displacements. Our results confirmed how a complex subject-specific movement can be reconstructed by sequencing and prioritizing multiple task-level commands to achieve desired movements. By combining the multidisciplinary approaches of robotics and biomechanics, the platform demonstrated here offers great potential for studying human movement control and subject-specific outcome prediction

    Describing race, ethnicity, and culture in medical research. Self defined ethnicity is unhelpful

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund and is available from the specified link - 1996 Copyright BMJ Publishing Group

    Evaluation of a Smart Fork to Decelerate Eating Rate.

    Get PDF
    Overweight is associated with a range of negative health consequences, such as type 2 diabetes, cardiovascular disease, gastrointestinal disorders, and premature mortality.1 One means to combat overweight is through encouraging people to eat more slowly.2 People who eat quickly tend to consume more3, 4 and 5 and have a higher body mass index,6, 7, 8 and 9 whereas people who eat more slowly feel sated earlier and eat less.10, 11, 12 and 13. Unfortunately, eating rate is difficult to modify, because of its highly automatic nature.14 In clinical settings, researchers have had some success changing behavior by using devices that deliver feedback in real time.15, 16 and 17 However, existing technologies are either too cumbersome18 or not engaging enough19 for use in daily life contexts. Training people to eat more slowly in everyday eating contexts, therefore, requires creative and engaging solutions. This article presents a qualitative evaluation of the feasibility of a smart fork to decelerate eating rate in daily life contexts. Furthermore, we outline the planned research to test the efficacy of this device in both laboratory and community settings<br/

    Bounded Influence Regression in the Presence of Heteroskedasticity of Unknown Form

    Get PDF
    In a regression model with conditional heteroskedasticity of unknown form, we propose a general class of M-estimators scaled by nonparametric estimates of the conditional standard deviations of the dependent variable. We give regularity conditions under which these estimators are asymptotically equivalent to M-estimators scaled by the true conditional standard deviations. The practical performance of these estimators is investigated through a Monte Carlo experiment

    SHRIMP zircon geochronology of the Emeishan Large Igneous Province (SW China): implications for double mass extinctions in Late Permian

    Get PDF
    Abstract in http://www.lpi.usra.edu/meetings/gold2001/pdf/3519.pd

    Trackways of the American Crocodile (Crocodylus acutus) in Northwestern Costa Rica: Implications for Crocodylian Ichnology

    Get PDF
    We documented trackways of free-living Crocodylus acutus on beaches at the mouths of Tamarindo and Ventanas estuaries, Costa Rica. Our crocodiles had estimated total lengths of 1–3 meters or more. Manus prints have five digits, with digits I–III bearing claw marks. Pes prints have four digits, with claw marks on digits I–III. The pes is plantigrade. Claws generally dig into the substrate. Apart from claw marks, digit I and the heel of the pes are usually the most deeply impressed parts of footprints. Trackways are wide-gauge. Pes prints are usually positioned just behind ipsilateral manus prints of the same set and may overlap them. Manus and pes prints angle slightly outward with respect to the crocodile’s direction of movement. Claw-bearing digits of both the manus and pes may create curved, concave-toward-the-midline drag marks as the autopodium is protracted. The tail mark varies in depth and clarity, and in shape from nearly linear to markedly sinuous. Sometimes the tail mark hugs the trackway midline, but sometimes it is closer to, or even cuts across, prints of one side. American crocodile footprints and trackways are similar to those observed in other extant crocodylian species, indicating substantial trackway conservatism across the grou
    • …
    corecore