449 research outputs found

    OPTIC: Orbiting Plutonian Topographic Image Craft Proposal for an Unmanned Mission to Pluto

    Get PDF
    The proposal for an unmanned probe to Pluto is presented and described. The Orbiting Plutonian Topographic Image Craft's (OPTIC's) trip will take twenty years and after its arrival, will begin its data collection which includes image and radar mapping, surface spectral analysis, and magnetospheric studies. This probe's design was developed based on the request for proposal of an unmanned probe to Pluto requirements. The distinct problems which an orbiter causes for each subsystem of the craft are discussed. The final design revolved around two important factors: (1) the ability to collect and return the maximum quantity of information on the Plutonian system; and (2) the weight limitations which the choice of an orbiting craft implied. The velocity requirements of this type of mission severely limited the weight available for mission execution-owing to the large portion of overall weight required as fuel to fly the craft with present technology. The topics covered include: (1) scientific instrumentation; (2) mission management; (3) power and propulsion; (4) attitude and articulation control; (5) structural subsystems; and (6) command, control, and communication

    Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans

    Full text link
     BACKGROUND: Interactions between wildlife and humans are increasing. Urban animals are often less wary of humans than their non-urban counterparts, which could be explained by habituation, adaptation or local site selection. Under local site selection, individuals that are less tolerant of humans are less likely to settle in urban areas. However, there is little evidence for such temperament-based site selection, and even less is known about its underlying genetic basis. We tested whether site selection in urban and non-urban habitats by black swans (Cygnus atratus) was associated with polymorphisms in two genes linked to fear in animals, the dopamine receptor D4 (DRD4) and serotonin transporter (SERT) genes. RESULTS: Wariness in swans was highly repeatable between disturbance events (repeatability = 0.61) and non-urban swans initiated escape from humans earlier than urban swans. We found no inter-individual variation in the SERT gene, but identified five DRD4 genotypes and an association between DRD4 genotype and wariness. Individuals possessing the most common DRD4 genotype were less wary than individuals possessing rarer genotypes. As predicted by the local site selection hypothesis, genotypes associated with wary behaviour were over three times more frequent at the non-urban site. This resulted in moderate population differentiation at DRD4 (FST = 0.080), despite the sites being separated by only 30 km, a short distance for this highly-mobile species. Low population differentiation at neutrally-selected microsatellite loci and the likely occasional migration of swans between the populations reduces the likelihood of local site adaptations. CONCLUSION: Our results suggest that wariness in swans is partly genetically-determined and that wary swans settle in less-disturbed areas. More generally, our findings suggest that site-specific management strategies may be necessary that consider the temperament of local animals

    Fate of Kaluza-Klein Bubble

    Full text link
    We numerically study classical time evolutions of Kaluza-Klein bubble space-time which has negative energy after a decay of vacuum. As the zero energy Witten's bubble space-time, where the bubble expands infinitely, the subsequent evolutions of Brill and Horowitz's momentarily static initial data show that the bubble will expand in terms of the area. At first glance, this result may support Corley and Jacobson's conjecture that the bubble will expand forever as well as the Witten's bubble. The irregular signatures, however, can be seen in the behavior of the lapse function in the maximal slicing gauge and the divergence of the Kretchman invariant. Since there is no appearance of the apparent horizon, we suspect an appearance of a naked singularity as the final fate of this space-time.Comment: 13 pages including 10 figures, RevTeX, epsf.sty. CGPG-99/12-8, RESCEU-6/00 and DAMTP-2000-30. To appear in Phys. Rev.

    Cosmological Black Holes on Branes

    Full text link
    We examined analytically a cosmological black hole domain wall system. Using the C-metric construction we derived the metric for the spacetime describing an infinitely thin domain wall intersecting a cosmological black hole. We studied the behaviour of the scalar field describing a self-interacting cosmological domain wall and find the approximated solution valid for large distances. The thin wall approximation and the back raection problem were elaborated finding that the topological kink solution smoothed out singular behaviour of the zero thickness wall using a core topological and hence thick domain wall. We also analyze the nucleation of cosmological black holes on and in the presence of a domain walls and conclude that the domain wall will nucleate small black holes on it rather than large ones inside.Comment: 13 pages, Revtex, to be published in Phys.Rev. D1

    Whisker spot patterns: a noninvasive method of individual identification of Australian sea lions (Neophoca cinerea)

    Get PDF
    Reliable methods for identification of individual animals are advantageous for ecological studies of population demographics and movement patterns. Photographic identification, based on distinguishable patterns, unique shapes, or scars, is an effective technique already used for many species. We tested whether photographs of whisker spot patterns could be used to discriminate among individual Australian sea lion (Neophoca cinerea). Based on images of 53 sea lions, we simulated 5,000 patterns before calculating the probability of duplication in a study population. A total of 99% (± 1.5 SD) of patterns were considered reliable for a population of 50, 98% (± 1.7 SD) for 100, 92% (± 4.7 SD) for 500, and 88% (± 5.7 SD) for 1,000. We tested a semiautomatic approach by matching 16 known individuals at 3 different angles (70°, 90°, and 110°), 2 distances (1 and 2 m), and 6 separate times over a 1-year period. A point-pattern matching algorithm for pairwise comparisons produced 90% correct matches of photographs taken on the same day at 90°. Images of individuals at 1 and 2 m resulted in 89% correct matches, those photographed at different angles and different times (at 90°) resulted in 48% and 73% correct matches, respectively. Our results show that the Chamfer distance transform can effectively be used for individual identification, but only if there is very little variation in photograph angle. This point-pattern recognition application may also work for other otariid species

    Island precipitation enhancement and the diurnal cycle in radiative-convective equilibrium

    Get PDF
    To understand why tropical islands are rainier than nearby ocean areas, we explore how a highly idealized island, which differs from the surrounding ocean only in heat capacity, might respond to the diurnal cycle and influence the tropical climate, especially the spatial distribution of rainfall and the thermal structure of the troposphere. We perform simulations of three-dimensional radiative-convective equilibrium with the System for Atmospheric Modeling (SAM) cloud-system-resolving model, with interactive surface temperature, where a highly idealized, low heat capacity circular island is embedded in a slab-ocean domain. The calculated precipitation rate over the island can be more than double the domain average value, with island rainfall occurring primarily in an intense, regular thunderstorm system that forms in the afternoon to early evening each day. Island size affects the magnitude of simulated island rainfall enhancement, the intensity of the convection, and the timing of the rainfall maximum relative to solar noon. A combination of dynamic and thermodynamic mechanisms leads to a monotonic enhancement of domain-averaged tropospheric temperature with increasing fraction of island surface, which may contribute to localization of ascent over the Maritime Continent and its relationship to the Walker Circulation.National Science Foundation (U.S.) (Grant AGS 1136466)National Science Foundation (U.S.) (Grant AGS 1136480

    Spatial infinity in higher dimensional spacetimes

    Full text link
    Motivated by recent studies on the uniqueness or non-uniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes(n4n \geq 4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the non-trivial Weyl tensor {}^{(n-1)}C_{abcd} in general. We also address static spacetime and its multipole moments P_{a_1 a_2 ... a_s}. Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed a multipole moments in static vacuum spacetimes. For example, we will consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of static vacuum solution we need some additional information, at least, the Weyl tensor {}^{(n-2)}C_{abcd} at spatial infinity.Comment: 6 pages, accepted for publication in Physical Review D, published versio

    Cosmic Physics: The High Energy Frontier

    Full text link
    Cosmic rays have been observed up to energies 10810^8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violation of Lorentz invariance, as well as Planck scale physics and quantum gravity.Comment: Topical Review Paper to be published in the Journal of Physics G, 50 page

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2
    corecore