In four dimensional general relativity, the fact that a Killing vector in a
vacuum spacetime serves as a vector potential for a test Maxwell field provides
one with an elegant way of describing the behaviour of electromagnetic fields
near a rotating Kerr black hole immersed in a uniform magnetic field. We use a
similar approach to examine the case of a five dimensional rotating black hole
placed in a uniform magnetic field of configuration with bi-azimuthal symmetry,
that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming
that the black hole may also possess a small electric charge we construct the
5-vector potential of the electromagnetic field in the Myers-Perry metric using
its three commuting Killing vector fields. We show that, like its four
dimensional counterparts, the five dimensional Myers-Perry black hole rotating
in a uniform magnetic field produces an inductive potential difference between
the event horizon and an infinitely distant surface. This potential difference
is determined by a superposition of two independent Coulomb fields consistent
with the two angular momenta of the black hole and two nonvanishing components
of the magnetic field. We also show that a weakly charged rotating black hole
in five dimensions possesses two independent magnetic dipole moments specified
in terms of its electric charge, mass, and angular momentum parameters. We
prove that a five dimensional weakly charged Myers-Perry black hole must have
the value of the gyromagnetic ratio g=3.Comment: 23 pages, REVTEX, v2: Minor changes, v3: Minor change