2,265 research outputs found

    Exploring the Effects of Pacing in Community College Courses

    Get PDF
    For-profit colleges are threatening community college enrollments by recruiting low-income and minority students with the appeal of quick degree and certificate program completion rates. To remain competitive, community colleges are creating guided pathways for student success. A guided pathway is a clear road map to certificate or degree completion. Community colleges that offer guided pathways challenge students to choose an academic program in their first semester and no later than their second semester. Once students choose their academic program they begin taking specific classes in pursuit of certificate and degree completion, which offer students flexibility in format (face-to-face, hybrid, and distance learning sections) and flexibility in pacing (self-paced vs. teacher-paced). This study investigated whether differences exist in course completion rates, preferences in pacing, and performance between non-traditional students and traditional students in either a teacher-paced or self-paced instructional environment at the community college level. Achievement and course completion outcomes, similar outcomes in a guided pathway, were two dependent variables in this study. Two covariates for this study were Pell Grant eligibility and grade point average (GPA). Also of interest was student preference in navigating either a teacher-paced or self-paced community college course. This study found performance differences along the following participant attributes: age, pacing environment, GPA and grant-funding status. Student preferences did differ between non-traditional students and traditional students completing a self-paced course and a teacher-paced course. Traditional students in a self-paced course were balanced initially in their thoughts toward a self-paced course, but by the end of the semester the traditional students preferred the self-paced course. The majority of non-traditional students preferred the self-paced course from the beginning of the semester and through the end of the semester. Performance also differed between students when considering grade point average (GPA) and Pell Grant eligibility. Student age and course completion rates were also tracked, but were shown to have no significance to student performance in this study

    Status and discovery prospects for light pseudoscalars in the NMSSM

    Get PDF
    While most BSM searches at the LHC focus on heavy new states, the NMSSM contains the possibility of new light states that have escaped detection due to their singlet nature. Here we focus on light pseudoscalars, investigating the parameter space impact of recent LHC searches for such light states stemming from the decay of the 125 GeV Higgs boson. It is shown that, though direct searches can not yet compete with the requirement of the 125 GeV scalar having SM-like couplings, the searches are touching the allowed parameter space and should make a phenomenological impact in the near future.Comment: To appear in the proceedings for EPS-HEP 201

    A prototype low-carbon segmented concrete shell building floor system

    Get PDF
    Concrete shell structures offer a mechanically efficient solution as a building floor system to reduce the environmental impact of our buildings. Although the curved geometry of shells can be an obstacle to their fabrication and implementation, digital fabrication and affordable robotics provide a means for the automation of their construction in a sustainable manner at an industrial scale. The applicability of such structures is demonstrated in this paper with the realisation of a large-scale concrete shell floor system, completed by columns, tie rods, and a levelled floor. The shell was prefabricated off-site in segments that can be transported and assembled on-site, and which can be disassembled to enable a circular economy of construction. This paper presents the conceptual and structural design; the automation of fabrication, thanks to an actuated, reconfigurable, reusable mould and a robotic concrete spraying process; the strategy and sequence of assembly and disassembly on-site using standard scaffold elements; and the sustainability assessment using life-cycle analysis. This prototype offers a reduction of about 50% of cradle-to-gate embodied carbon benchmarked against regular flat slabs before further improvement and optimisation

    Computational design exploration of a segmented concrete shell building floor system

    Get PDF
    The construction industry is responsible for nearly half of the UK's carbon emissions, and the use of an extremely large volume of concrete, the world's most widely used man-made material, accounts for more than 7% of global CO2 emissions. The scale of this problem spawned research that explored the potential for structurally efficient non-prismatic geometries to substantially reduce the amount of concrete in building elements, thus also reducing their embodied carbon footprint. In particular, the research focused on segmented thin concrete shells as floor slabs, leveraging computational design and digital fabrication methodologies to automate their production off-site. An important part of this research was the development of a computational framework for the design of thin concrete shells, to make such construction methodology accessible to building designers in practice. The framework combined solutions for parametric modelling, finite element analysis, isogeometric analysis, form finding and optimisation, and also embedded fabrication constraints specific to the project's automated manufacturing system. This paper documents the application of the developed computational framework in the design of a 4.5m x 4.5m prototype, illustrating how automating concrete construction can transform the industry towards net-zero

    Whole genome sequencing of enriched chloroplast DNA using the Illumina GAII platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complete chloroplast genome sequences provide a valuable source of molecular markers for studies in molecular ecology and evolution of plants. To obtain complete genome sequences, recent studies have made use of the polymerase chain reaction to amplify overlapping fragments from conserved gene loci. However, this approach is time consuming and can be more difficult to implement where gene organisation differs among plants. An alternative approach is to first isolate chloroplasts and then use the capacity of high-throughput sequencing to obtain complete genome sequences. We report our findings from studies of the latter approach, which used a simple chloroplast isolation procedure, multiply-primed rolling circle amplification of chloroplast DNA, Illumina Genome Analyzer II sequencing, and de novo assembly of paired-end sequence reads.</p> <p>Results</p> <p>A modified rapid chloroplast isolation protocol was used to obtain plant DNA that was enriched for chloroplast DNA, but nevertheless contained nuclear and mitochondrial DNA. Multiply-primed rolling circle amplification of this mixed template produced sufficient quantities of chloroplast DNA, even when the amount of starting material was small, and improved the template quality for Illumina Genome Analyzer II (hereafter Illumina GAII) sequencing. We demonstrate, using independent samples of karaka (<it>Corynocarpus laevigatus</it>), that there is high fidelity in the sequence obtained from this template. Although less than 20% of our sequenced reads could be mapped to chloroplast genome, it was relatively easy to assemble complete chloroplast genome sequences from the mixture of nuclear, mitochondrial and chloroplast reads.</p> <p>Conclusions</p> <p>We report successful whole genome sequencing of chloroplast DNA from karaka, obtained efficiently and with high fidelity.</p

    Differential effects of FODMAPs (Fermentable Oligo-, Di-, Mono-Saccharides and Polyols) on small and large intestinal contents in healthy subjects shown by MRI

    Get PDF
    OBJECTIVES: The objective of this study was to investigate whether ingestion of fructose and fructans (such as inulin) can exacerbate irritable bowel syndrome (IBS) symptoms. The aim was to better understand the origin of these symptoms by magnetic resonance imaging (MRI) of the gut. METHODS: A total of 16 healthy volunteers participated in a four-way, randomized, single-blind, crossover study in which they consumed 500 ml of water containing 40 g of either glucose, fructose, inulin, or a 1:1 mixture of 40 g glucose and 40 g fructose. MRI scans were performed hourly for 5 h, assessing the volume of gastric contents, small bowel water content (SBWC), and colonic gas. Breath hydrogen (H 2) was measured and symptoms recorded after each scan. RESULTS: Data are reported as mean (s.d.) (95 % CI) when normally distributed and median (range) when not. Fructose increased area under the curve (AUC) from 0 – 5 h of SBWC to 71 (23) l / min, significantly greater than for glucose at 36 (11 – 132) l / min ( P < 0.001), whereas AUC SBWC after inulin, 33 (17 – 106) l / min, was no different from that after glucose. Adding glucose to fructose decreased AUC SBWC to 55 (28) l / min ( P = 0.08) vs. fructose. Inulin substantially increased AUC colonic gas to 33 (20) l / min, signifi cantly greater than glucose and glucose + fructose (both P < 0.05). Breath H 2 rose more with inulin than with fructose. Glucose when combined with fructose signifi cantly reduced breath H 2 by 7,700 (3,121 – 12,300) p.p.m. / min relative to fructose alone ( P < 0.01, n = 13). CONCLUSIONS: Fructose but not inulin distends the small bowel with water. Adding glucose to fructose reduces the effect of fructose on SBWC and breath hydrogen. Inulin distends the colon with gas more than fructose, but causes few symptoms in healthy volunteers
    corecore