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Postembryonic Lineages of the Drosophila Ventral
Nervous System: Neuroglian Expression Reveals the
Adult Hemilineage Associated Fiber Tracts in the
Adult Thoracic Neuromeres

David Shepherd,1,2* Robin Harris,2† Darren W. Williams,2,3 and James W. Truman2

1School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK
2HHMI-Janelia Research Campus, Ashburn, Virginia, USA
3MRC Centre for Developmental Neurobiology, King’s College London, London, UK

During larval life most of the thoracic neuroblasts (NBs)

in Drosophila undergo a second phase of neurogenesis

to generate adult-specific neurons that remain in an

immature, developmentally stalled state until pupation.

Using a combination of MARCM and immunostaining

with a neurotactin antibody, Truman et al. (2004; Devel-

opment 131:5167–5184) identified 24 adult-specific NB

lineages within each thoracic hemineuromere of the

larval ventral nervous system (VNS), but because of the

neurotactin labeling of lineage tracts disappearing early

in metamorphosis, they were unable extend the identifi-

cation of these lineages into the adult. Here we show

that immunostaining with an antibody against the cell

adhesion molecule neuroglian reveals the same larval

secondary lineage projections through metamorphosis

and bfy identifying each neuroglian-positive tract at

selected stages we have traced the larval hemilineage

tracts for all three thoracic neuromeres through meta-

morphosis into the adult. To validate tract identifica-

tions we used the genetic toolkit developed by Harris

et al. (2015; Elife 4) to preserve hemilineage-specific

GAL4 expression patterns from larval into the adult

stage. The immortalized expression proved a powerful

confirmation of the analysis of the neuroglian scaffold.

This work has enabled us to directly link the secondary,

larval NB lineages to their adult counterparts. The data

provide an anatomical framework that 1) makes it pos-

sible to assign most neurons to their parent lineage

and 2) allows more precise definitions of the neuronal

organization of the adult VNS based in developmental

units/rules. J. Comp. Neurol. 524:2677–2695, 2016.
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Understanding how nervous systems integrate sen-

sory information to generate behavioral outputs is key

to our efforts to analyze how nervous systems function.

This is a daunting challenge, given the immense com-

plexity of most nervous systems. Even within the nerv-

ous systems of insects like Drosophila, there is a

daunting complexity, with over 100,000 neurons and

100s of cell types that can make analysis very difficult.

Despite this challenge it is possible to build an under-

standing of how a system works if it can be broken into

simple modules that can be placed into a functional

hierarchy. The power of this type of approach is evident

in the vertebrate spinal cord, where the complex sen-

sory motor circuitry that controls locomotion is gener-

ated from distinct pools of progenitor cells. These

progenitors form discrete and identifiable populations

of interneurons, each with defined roles in the locomo-

tor circuits (Grillner and Jessell, 2009). Furthermore,

this functional organization has a deep evolutionary sig-

nificance, with progenitor domains and transcription
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factors that define different interneuron classes being

conserved between fish and mammals (Lupo et al.,

2006) despite their very different modes of locomotion.

These organizational principles are similar to the

insect ventral nervous system (VNS), which, like the

spinal cord, is responsible for sensory motor integration

and locomotion. Work on grasshoppers and other

orthopteran insects identified populations of interneur-

ons that integrate sensory inputs into changes in pos-

ture (Burrows, 1996) and generate behaviors such as

walking (B€uschges et al., 2008), jumping (Heitler and

Burrows, 1977a,b), and flying (Robertson et al., 1982).

Similar to the vertebrate spinal cord, these populations

of neurons are organized along developmental princi-

ples in which specific populations arise from distinct

neural precursor stem cells called neuroblasts (NBs)

(Thomas et al., 1984; Truman and Bate, 1988). For

example, in the grasshopper thoracic ganglia NB 4-1

produces a population of spiking interneurons that

receive primary sensory input from the legs and inte-

grate the information to create the receptive fields of

leg sensory neurons (Shepherd and Laurent, 1992; Bur-

rows and Newland, 1993, 1994).

Within the thoracic neuromeres of the Drosophila VNS,

most neurons are produced by a segmentally repeated

and stereotyped array of 30 self-renewing, with each of

these serially homologous NBs, having a unique identity

determined by position and gene expression (Skeath and

Thor, 2003). Typically, each NB divides repeatedly to pro-

duce a clone of neurons that constitute its lineage. Each

NB produces a chain of progenitor cells, called ganglion

mother cells (GMCs). With the exception of the Type II

NBs in the central brain (Boone and Doe, 2008) each

GMC divides once to produce two terminally differenti-

ated neurons or glia. The fate of the neurons is deter-

mined by Notch signaling, with one sibling activating

Notch signaling and the other not; thus, each NB pro-

duces two distinct populations of neurons called hemili-

neages, one that is Notch “On” and the other Notch “Off”

(Truman et al., 2010). Like NB4-1 in the grasshopper,

most of the hemilineages in Drosophila are composed of

populations of interneurons that share a common anat-

omy and neurotransmitters (Harris et al., 2015). Truman

et al. (2004) showed that despite the apparent complex-

ity of the VNS there are essentially 33 basic projection

patterns for the thousands of neurons within a thoracic

hemineuromere, suggesting that, like the vertebrate spi-

nal cord, different neuronal classes can be defined

according to a developmental program. Furthermore,

Harris et al. (2015) have shown that the stimulation of

interneurons in a hemilineage can elicit specific and char-

acteristic behavioral responses, suggesting that the hem-

ilineages represent functional modules. Together, this

suggests that taking a hemilineage-based perspective on

the construction of the Drosophila VNS will provide a

deep understanding of the complex network required for

processing of sensory motor information.

Despite this apparent simplicity, tracing the develop-

mental origins of the adult hemilineages in Drosophila

has been slow. In insects that have a complete meta-

morphosis, many NBs have two stages of neurogenesis.

In the embryo the NBs generate a set of neurons that

regulate larval behavior (Larsen et al., 2009), then after

a period of quiescence the NBs reactivate for a second

and longer phase of proliferation to produce the adult-

specific set of neurons. These adult-specific neurons

extend a primary neurite into the neuropil but arrest

until the onset of metamorphosis, when they grow rap-

idly to form the adult circuitry. In most cases the neu-

rons in a specific hemilineage extend their primary

neurites into a tightly fasciculated bundle with an

almost invariant trajectory in the neuropil. The limited

cell mixing and migration of neurons from their parent

NB means that the bundled neurites of specific hemili-

neages can be unambiguously identified using the cell

adhesion protein, neurotactin. The assignment of neu-

rons to a specific hemilineage was achieved by refer-

encing the primary neurites from MARCM-labeled NB

clones to the scaffold of neurotactin-positive bundles,

hereafter referred to as tracts (Truman et al., 2004).

Although this provided insight into the developmental

origins of secondary neurons, its impact on understand-

ing the developmental organization of the adult VNS

was limited because the neurotactin labeling was tran-

sient and disappeared early in metamorphosis, making

made it more difficult to analyze the hemilineages as

they matured into adult neurons. Here we reveal that,

as shown for the central brain (Lovick et al., 2013), an

antibody to the membrane-associated protein neuro-

glian not only reveals the hemilineage scaffold in the

larval VNS but also persists through metamorphosis

and allows identification of the hemilineage tracts in

the adult. The data show it is possible to chart these

functional modules within the adult VNS and uncover

the developmental rules for its assembly.

MATERIALS AND METHODS

Fly stocks
All flies were reared on standard cornmeal and

molasses food at 258C. Lines used include: GAL4 lines

from the Rubin GAL4 collection (Pfeiffer et al., 2008)

and OK371 (Mahr and Aberle, 2006). The lines and

techniques used to “immortalize” larval hemilineages

are exactly as detailed in Harris et al. (2015) and were

undertaken at the same time.

D. Shepherd et al.
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Generation of MARCM clones
The MARCM technique was used, in which the FLP/

FRT system induced clones that lacked GAL80, a sup-

pressor of GAL4, to make CD8::GFP-labeled clones in

an unlabeled background (Lee and Luo, 2001). The

GAL4 drivers used for MARCM were elavC155 and

OK371. Eggs were collected on apple juice plates for 2

hours, held for 24 hours (both at 258C), and the larvae

were heat shocked between 3 and 5 hours after hatch-

ing. Larvae were reared on standard food at 258C.

Nervous systems were dissected from 1-day-old adults.

Preparation and examination of tissues
Tissues were dissected in PBS (phosphate-buffered

saline, pH 7.8) and fixed in 4% buffered formaldehyde

for 1 hour at room temperature. Fixed tissues were

washed in PBS-TX (PBS with 1% Triton X-100, Sigma,

St. Louis, MO), incubated in 10% normal donkey serum

(Jackson ImmunoResearch, West Grove, PA; Cat. no.

017-000-001 RRID:AB_2337254) for up to 6 hours, and

then in 1:1,000 rabbit anti-GFP (Molecular Probes (Invi-

trogen), Eugene, OR; Cat. no. A11122 RRI-

D:AB_221569), 1:40 rat anti-N-cadherin (Developmental

Studies Hybridoma Bank, Iowa City, IA; Cat. no. DN-Ex

8 RRID:AB_528121), and 1:40 mouse anti-neuroglian

(Developmental Studies Hybridoma Bank; Cat. no. BP

104 anti-neuroglian RRID:AB_528402) overnight at 48C.

Tissues were washed in PBS-TX and incubated with

1:500 AlexaFluor 488-conjugated donkey antirabbit

(Jackson ImmunoResearch; Cat. no. 715-545-151 RRI-

D:AB_2341099), AlexaFluor 594-conjugated donkey

antimouse (Jackson ImmunoResearch; Cat. no. 715-

585-151 RRID:AB_2340855), and AlexaFluor 647-

conjugated donkey antirat (Jackson ImmunoResearch;

Cat. no. 712-605-153 RRID:AB_2340694) overnight at

48C. This is a standard antibody protocol we use for all

our studies. The N-cadherin staining reveals the fine

structure of the neuropil but the information provided

by this channel was not used in this study. Tissues

were washed in PBS-TX, mounted onto poly-lysine-

coated coverslips, dehydrated through an ethanol

series, cleared in xylene, and mounted in DPX mountant

(Sigma-Aldrich). Nervous systems were imaged on

either a Zeiss LSM 510 or Zeiss 710 confocal micro-

scope at either 403 or 633 with optical sections taken

at either 1 lm or 2 lm intervals. LSM files were

contrast-enhanced as necessary. z-projected images

were created using ImageJ (http://rsbweb.nih.gov/ij/),

Z sections were made with Vaa3D (Peng et al., 2010)

(http://home.penglab.com/proj/vaa3d/home/index.

html) and montages made in Adobe Photoshop (San

Jose, CA).

Antibody characterization
Anti-GFP is a commercially available polyclonal anti-

body raised in rabbit to purified GFP (Table 1). In our

studies its specificity is validated by internal controls

such that the pattern of immunostaining consistently

and precisely matches the patterns of fluorescence pro-

duced by Gal4-driven GFP expression in a vast array of

different GAL4 lines including negligible immunoreactiv-

ity in non-GFP-expressing tissues. It has also been

widely used in many other systems and organisms to

successfully demonstrate the localization of expressed

GFP.

Anti-neuroglian (RRID:AB_528402) is an IgG1 anti-

body raised in mouse against a nervous system-specific

180 kD splice variant of Drosophila neuroglian (Hortsch

et al., 1990) (Table 1). The 180 kD isoform can be puri-

fied to homogeneity and the derived amino acid

sequence was identical to the sequence for the amino

terminus of the 167 kD isoform (Bieber et al., 1989;

Hortsch et al., 1990). The antibody recognizes an epi-

tope on the cytoplasmic segment of the long form of

the protein (Hortsch et al., 1990). Null mutations in the

nrg gene are lethal but hypomorphic mutations have

greatly reduced expression (Hall and Bieber, 1997).

Neuroglian protein expression assessed using BP-104 in

nrg3 mutants, which are temperature-sensitive, shows

that at the restrictive temperature, labeling in

neuroglian-positive neuronal processes was eliminated

(Hall and Bieber, 1997).

RESULTS

In this article we use both the postembryonic desig-

nations of the NBs (Truman et al., 2004) and the

embryonic nomenclature of Schmid et al. (1999). The

TABLE 1.

Antibodies Used

Antibody Immunogen Source Dilution

Anti GFP GFP isolated directly from the jel-
lyfish Aequorea victoria

Molecular Probes (Invitrogen); Cat.
no. A11122 RRID:AB_221569

1:500

Anti-Drosophila Neuroglian Nervous system-specific 180 kD
splice variant of Drosophila Neu-
roglian (Hortsch et al., 1990).

Developmental Studies Hybridoma
Bank; Cat. no. BP 104 anti-
Neuroglian RRID:AB_528402

1:40

Postembryonic lineages in Drosophila VNS
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nomenclature for postembryonic hemilineages devised

by Truman et al. (2010) is a notation that describes the

NB of origin and whether they are the Notch-on (A) or

Notch-off (B) daughter of the GMC division. With the

embryonic nomenclature, while there is agreement in the

correspondence between the embryonic and postem-

bryonic designations in most instances, in some cases

they are in dispute (Birkholz et al., 2015; Lacin and

Truman, in preparation) and these have been so indi-

cated. Identification of which hemilineages survive into

the adult was based on Truman et al. (2010) describing

which thoracic hemilineages survive to late third instar.

Metamorphosis of the neuroglian scaffold
Shortly after the end of larval life the postembryonic

NBs in the VNS have ceased division and their progeny

Figure 1. Metamorphosis of the neuroglian scaffold in the VNS. Confocal images of neuroglian-stained hemilineage tracts at three stages

of metamorphosis showing the transformation of the neuroglian scaffold from early pupa to adult. Each tract is labeled with its corre-

sponding hemilineage notation. (A) Early pupa 24 hours APF. (B) Mid-stage pupa 36 hours APF, (C) Late pupa 72 hours APF. Each panel

is a composite slice of five confocal Z slices taken at different planes on the dorsal ventral axis selected to maximize the visualization of

the tracts. Moving from left to right each image is taken at an increasingly more dorsal plane. Anterior is up. Scale bar 5 100 lm.

D. Shepherd et al.
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are clustered in clonal units in the cortical layer of the

VNS. By this stage each neuron in a hemilineage has

extended a primary neurite to form, along with their sib-

ling neurons, a coherent and hemilineage-specific neu-

rite tract with a discrete point of entry into the neuropil

and an almost invariant projection within the neuropil.

Labeling the late larval VNS with anti-neuroglian reveals

the full hemilineage tract scaffold in the larval VNS and

it is thereby possible to identify the tracts of each of

the 33 hemilineages that contribute to each hemiseg-

mental unit of the thoracic neuromeres (Fig. 1A1–5;

Supplementary Fig. 1).

Unlike neurotactin, the neuroglian signal does not

disappear at the onset of metamorphosis and continues

to label the scaffold through metamorphosis and into

adult stages (Fig. 1A–C). This timeline shows that most

of the hemilineage tracts remain tightly fasciculated

and coherent through metamorphosis. Despite the

changes in the gross morphology of the VNS (expansion

and rotation of the thoracic neuromeres), the hemiline-

age tracts retain the same relative positions and are

consistent between preparations (n > 200). Although

the majority of the neurite tracts remain labeled, a

small number become weakly labeled and less distinct

but still recognizable in the early adult.

By identifying each hemilineage tract at selected

stages of metamorphosis, we traced all hemilineage

tracts through metamorphosis into the adult for all

three thoracic neuromeres. Each adult hemilineage tract

can be directly related to its larval tract.

In early pupa (�24 hours after pupa formation [APF],

Fig. 1A; Supplementary Fig. 2), the neuroglian-labeled

scaffold is identical to the larval neurotactin scaffold

and it is possible to identify all tracts found in the larva

(Truman et al., 2004). By mid-stage (�36 hours APF,

Fig. 1B; Supplementary Fig. 3), the VNS has begun to

acquire its adult shape with the expansion of the three

thoracic neuromeres. There are only slight changes in

the scaffold and one can still identify all larval tracts.

By later stages (>70 hours APF, Fig. 1C; Supplemen-

tary Fig. 4) the VNS has the distinctive adult shape;

although some tracts are distorted by morphological

changes, they retain their relative positions and can be

readily identified. For example, the tracts from the

medial hemilineages 0, 2A, 5B, 7B, 10B, 14A, 15B,

16B, and 23B are almost unchanged throughout (Figs.

1A–C, 2). A small number of hemilineages, however,

showed significant changes.

Anterior prothoracic lineages
At the anterior of the prothoracic neuromere the distor-

tion caused by the anterior migration of the gnathal

neuromeres and the formation of the cervical connec-

tive results in the anterior hemilineages (7B, 8B, and

9A) being drawn anteriorly, making the identification of

the tracts more difficult. In early pupa the 7B, 8B, and

9A tracts are easily distinguishable (Fig. 1A), but in the

adult the tracts fuse to form a single tract (Fig. 1B).

The 7B and 8B tracts are only distinguishable at the

point when 8B defasciculates and turns medially just

anterior to the 2A tract and 7B projects posteriorly (Fig.

1C5–6). The 9A tract enters the neuromere from a dor-

sal position to fuse with 7B and 8B with 9B only distin-

guishable by its dorsal origin (Fig. 1B4).

Lateral lineages
The lateral hemilineages are displaced due to expansion

of the neuropil and lie on the dorsal surface of the

adult VNS. Despite the displacement they retain their

relative positions with the anterior lateral lineages 9A,

17, and 18 and the posterior lateral hemilineages 11,

19, and 23B retaining their close associations to form

two distinct clusters. The tracts from the hemilineages

in each cluster, however, are fused into a single tract

and individual projections can only be resolved as they

defasciculate, e.g., hemilineages 11, 19, and 23 (Fig.

1C6) and 17B and 18B (Fig. 1C5–6).

Separation of sibling hemilineages
With lineages in which both the A and B hemilineages

survive, the two hemilineages separate to form two dis-

tinct projections. At the start of metamorphosis sibling

hemilineages are typically closely associated as a single

cluster with neurites sharing the same or adjacent entry

points into the neuropil. As the VNS expands the two

hemilineages pull apart and can lose obvious anatomi-

cal association. This is most extreme for the hemili-

neages of lineages 1, 8, 12, and 13. In all cases such

changes are consistent between preparations.

Validation of the hemilineage identification
Although we traced the adult neuroglian tracts

through metamorphosis, we also independently verified

the identity of each. Tracing GAL4 lines with expression

in known larval hemilineages through metamorphosis

proved unsuccessful. A screen of expression in over

7,000 GAL4 lines (Li et al., 2014) resulted in a collec-

tion of lines with expression in single larval hemili-

neages, but analysis of the adult expression showed

that in almost every case the expression changed dur-

ing metamorphosis, with adult expression showing no

relationship to that in the larva. We identified only two

lines with a pattern of GAL4 expression that was

hemilineage-specific and retained in adult stages. These

lines are OK371 and R52B04, both of which were used

in this study.

Postembryonic lineages in Drosophila VNS
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In the absence of GAL4 lines with expression in sin-

gle hemilineages in larva and adult, we made use of

techniques developed to maintain and “immortalize”

larval hemilineage-specific expression to preserve the

larval expression pattern into the adult (Harris et al.,

2015). This provided a library of crosses that gave a

permanent hemilineage-specific marker that can be

detected in the adult and allow confirmation of the

hemilineage identity independent of the neuroglian tract

time series.

Anatomy of the adult neuroglian scaffold
Below is a description of the adult neuroglian scaf-

fold to provide an anatomical framework that allows

identification of each hemilineage. Rather than dis-

cuss lineages in number order, which has no func-

tional basis, we present the lineages based on their

anatomy.

Lineages that contribute to the anterior
commissure
In the larva, axon bundles from seven lineages run

through the anterior commissure (Truman et al., 2004).

Three (1A, 13B, and 14) contribute to the ventral ante-

rior (vA) commissure, while four (7, 8B, 10, and 18) run

in the intermediate anterior (iA) commissure. Along the

anterior–posterior axis the vA and iA commissures are

separated by the bundles from lineage 2. Ventrally, the

lineage 1 bundle is anterior to lineage 2 tracts and the

13 and 14 bundles are posterior, with 14 anterior to

Figure 2. Transverse sections of the adult VNS neuroglian-labeled hemilineage scaffold in the adult VNS. Each panel is a 5-lm-thick opti-

cal slice through the same confocal stack at a position to give the most complete image of the scaffold organization. The sequence of

images (A–I) moves from anterior to posterior with the position of each section shown in the inset figure. (A–C) Prothoracic neuromere.

(D–F) Mesothoracic neuromere. (G–I) Metathoracic neuromere. Dorsal is up. Scale bar 5 100 lm.

D. Shepherd et al.
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13. At the intermediate level, the tracts from lineages

10 and 18 are anterior to lineage 2, while 7 and 8 are

posterior to lineage 2 with 7 posterior to 8. The relative

typography persists through metamorphosis and in the

arrangement of the adult tracts.

Lineage 1 (NB 1-2)
Lineage 1 is the anteriormost lineage in each neuro-

mere and is the only lineage that projects fibers into

two neuromeres (Truman et al., 2004). In the larva, the

1A neurons run in the vA commissure of the neuromere

of origin, while the 1B neurons project into the next

anterior segment. In the larva and early pupa, the cells

of the 1A and 1B hemilineages are closely associated

(Figs. 1A1, 2) and their tracts share a common point of

origin (Figs. 1A1, 2). As the VNS expands the 1A and

1B cells separate, the 1A cells move dorsally to the

dorsal third of the VNS, and the 1B cells are drawn

anteriorly to sit at the posterior margin of the next

anterior segment (Fig. 3B–C) into which they project

their primary neurites. Thus, the projections of the sib-

ling lineage 1 hemilineages and their cells are in differ-

ent neuromeres.

In adult T1, the 1A tract is weakly labeled and

barely detectable, although it can be seen at earlier

stages (Fig. 1). The R22G11 GAL4 line allows identifi-

cation of the 1A tract in T1 (Fig. 3A). This shows 1A

enter the neuropil from an anterior position adjacent

to the midline to form a tract that passes ventrally

under the axons of the cervical connective to cross

the midline. In T1, 1A forms a cruciform structure with

its contralateral homolog (arrow in Fig. 3A). In T2, the

1A tract is strongly labeled at all stages and projects

ventromedially (Fig. 1C3–4), to cross the midline as

part of a superficial anterior ventrally located commis-

sure (Figs. 1C3, 3A). In T3, 1A is less obvious than in

T2 and projects anteromedially to cross the midline in

a superficial anterior–ventral commissure (Figs. 1C3,

3A).

The neurons of the 1B hemilineage die in T1, but per-

sist in T2, T3, and A1 to innervate the leg neuropil of

the segment anterior to their origin. The 1B neurons in

T2 form a short neuroglian-positive tract (Fig. 3B) that

runs superficially around the rim of the neuropil to

enter the T1 neuropil ventrally in the posterior lateral

quarter of the neuromere and projects medially (Fig.

3B). The 1B neurons from T3 project into the T2 leg

neuropil and are not strongly labeled and cannot be

readily identified from the neuroglian signal (Fig. 1C).

Based on GFP expression (Fig. 3C), the T3 cells enter

the T2 neuropil ventrally and project medially.

Lineage 7 (NB 4-2 or 3-2)
Only hemilineage 7B is found in the adult (Truman et al.,

2010) and is easily identifiable in T2 and T3 throughout

metamorphosis (Fig. 1A–C). In T1 the 7B neurons are

Figure 3. Validation of the hemilineage tract identification for the

lineages that contribute to the anterior commissures. Each panel

is a composite of five horizontal Z stacks to best illustrate the

identification. Where possible, the left side of the image has the

GFP signal (green) removed to allow identification of the underly-

ing neuroglian signal (magenta). (A–C) Lineage 1 revealed by

immortalization of the larval expression pattern of line R22G11.

(A) Hemilineage 1A. (B,C) Hemilineage 1B tract in T1 (B) and T2

(C). (D–F) Hemilineage 18B revealed by immortalization of the

larval expression pattern of line R27A09. (D) Hemilineage 18B

projections in T2 and T3. (E,F) Transverse sections E (T2) and F

(T3) at the levels indicated by the arrows in D. (G,H) Lineage 13

revealed by immortalization of the larval expression pattern of

line R81F02 in T1 and T2 only. Scale bar 5 100 lm.
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displaced anteriorly and the 7B tract enters the neuropil

along with the 8B and 9 axons as a single, fused, poste-

riorly directed tract (Fig. 4A). The 7B axons can only be

recognized as they diverge when 8B turns medially and

7B continues posteriorly (Figs. 1C6, 4A). In T2 and T3

the 7B projections are easily distinguished (Fig. 4A), with

7B running parallel and posterior to 8B (Figs. 1 and 4A),

a feature that persists from the larva. Identification of

the adult tract was confirmed by immortalizing the

expression of the R75H06 line (Fig. 4A).

Lineage 8 (NB 2-4 or 3-3)
Hemilineages 8A and 8B are both found in the adult

and their identification was confirmed by the immortal-

ized expression of GFP with the R30C03 cross (Fig.

4B). The tracts from each hemilineage are visible in all

three thoracic neuromeres and throughout metamor-

phosis (Fig. 1A–C). In early pupa both tracts share a

common entry point into the neuropil and pass through

the lateral cylinder (Fig. 1A3). As they pass through the

cylinder 8A turns laterally and 8B turns medially (Fig.

1A4). By mid-pupa the tracts have separate entry points

into the neuropil (Fig. 1B) with 8B medial to 8A and

with 8B projecting medially and 8A projecting laterally

(Fig. 1B3–5).

In adult the 8A tract projects to the ipsilateral leg

neuropil and is closely associated with the 16B tract,

which enters the neuropil just lateral to the 8A tract

(Fig. 4B). In adult T1 we cannot use neuroglian staining

to resolve 8A from 16B as they form a single tract that

projects posteriorly into the ipsilateral neuropil. In adult

T2 and T3, 8A and 16B enter the neuropil at the same

point as a single tract and project medially before they

diverge with 8A, taking the more posterior pathway

(compare Figs. 4B and 6H).

The adult 8B hemilineage is fasciculated with the 7B

neurons in anterior T1 at their point of entry to the neu-

ropil, but 8B defasciculates and turns medially just

anterior to the 2A projection (Fig. 4B). In T2 and T3 the

8B tract, along with 7B, forms a characteristic medially

projecting doublet of projections with 8B the anterior-

most (Figs. 1C5, 4B).

Lineage 10 (NB 2-2)
Hemilineage 10A neurons die in the larva, while the

10B neurons project through the iA commissure ante-

rior to the 2B bundles (Truman et al., 2010). The 10B

tract can be identified in all thoracic neuromeres and

all stages of metamorphosis (Fig. 1A–C). Immortalized

GFP expression with line R13B08 provides a strong

and clean signal, confirming the identity of the neuro-

glian tract (Fig. 4C). In T1 the 10B cells are drawn

anteriorly and the tract enters the neuropil close to

the cervical connective to form a bowed projection

that runs posteriorly and lateral to 2A (Figs. 1C4, 4C).

The 10B insertion can be distinguished from 8B, 7B,

and 9 by its more medial and ventral position (Fig.

2A). In T2 and T3 the 10A bundle is short and only

the ventral most parts are labeled as it projects dor-

sally into the neuropil just lateral to 2A (Figs. 1C3,

2D,F, 4C).

Figure 4. Validation of the hemilineage tract identification for lin-

eages that contribute to the anterior Commissure. Data organiza-

tion as in Fig. 3. (A) Hemilineage 7B revealed by immortalization

of the larval expression pattern of line R75H06. (B) Lineage 8

revealed by immortalization of the larval expression pattern of

line R30C03. (C) Hemilineage 10B revealed by immortalization of

the larval expression pattern of line R13B08. (D) Hemilineage

14B revealed by the expression pattern of line OK371. Scale

bar 5 100 lm.
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Lineage 13 (NB 3-3 or 4-2)
In the larva, the 13A siblings project to the ipsilateral

leg neuropil while the 13B siblings project across the

vA commissure to the contralateral leg neuropil. Immor-

talized expression of GFP with R81F02 confirmed the

identity of both 13A and 13B tracts (Fig. 3G,H) in the

adult. As with lineage 1, the two hemilineages separate

during metamorphosis. At 12 hours APF the neuroglian

tracts from each hemilineage diverge from a common

origin in all three thoracic neuromeres (Fig. 1A1). By 36

hours APF the two hemilineage tracts have separated;

the 13B cells now sit at the ventral midline and project

neurites across the midline and the 13A cells have

moved laterally and project neurites in an anterior lat-

eral direction (Fig. 1B1). By 72 hours APF the hemili-

neages are completely separated and show no obvious

anatomical associations (Fig. 1C). On occasion, the

somata of the 13B neurons are drawn across the mid-

line and can be ipsilateral to their primary projections.

The 13B tract is the posterior of the two ventrally

Figure 5. Validation of the hemilineage tract identification for lineages that contribute to the posterior commissure. Data organization as

in Fig. 3. (A) Hemilineage 5B revealed by immortalization of the larval expression pattern of line R86D02. (B,C) Lineage 6: (B,C) are at dif-

ferent planes on the dorsal ventral axis to illustrate the differing trajectories of the 6A and 6B hemilineages with C being dorsal to B.

(D,E) Lineage 12, with the A hemilineage revealed by immortalization of the larval expression pattern of line R24B02 (D) and the B hemili-

neage by immortalization of the larval expression pattern of line R15D11 (E). (F,G) Lineage 19 with the A hemilineage revealed by immor-

talization of the larval expression pattern of line R84E06 (F) and the B hemilineage by immortalization of the larval expression pattern of

line R50C03 (G) (* indicates the projections of sensory afferents from the halteres). (H) Hemilineage 23B revealed by immortalization of

the larval expression pattern of line R77C10 with transverse sections at the levels indicated. Scale bar 5 100 lm.
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located neuroglian labeled tracts that cross the midline

in the anterior of each neuromere (Figs. 1C, 2A,D,H,

3G,H).

The adult projections of the 13A neurons are similar

in all three thoracic neuromeres. The neuroglian tract is

short and only detectable around the entry into the

neuropil (Figs. 1C1–3, 3G). It is one of the ventralmost

tracts and projects dorsally. In T1, 13A enters the neu-

ropil from a ventrolateral position at the anterior of the

neuromere just lateral to the T1 leg nerve (Figs. 1C3,

3G). In T2, 13A is the ventralmost neuroglian landmark

and projects along the edges of the neuropil (Figs. 1C1,

3G,H). In T3, the 13A neurons project dorsally from the

ventral surface from a position in the middle of the neu-

romere (Figs. 1C1, 2H).

Lineage 14 (NB 4-1)
In larva, almost all the 14B neurons die, while the

14A neurons persist and project across the vA com-

missure to the contralateral neuropil (Truman et al.,

2010). The 14A tract can be recognized at all stages

of metamorphosis (Fig. 1A–C) and its position remains

relatively unchanged throughout. 14A is the anterior

of two neuroglian-positive bundles that form the vA

commissure (Fig. 1C2–3, 2A,D,H). The other is from

13B.

Lineage 14 is revealed by line OK371, which has lin-

eage 14-specific expression from larva to adult and

allows lineage 14 to be traced through development

without the need for immortalization. The expression

confirms the identification of the 14A tract (Fig. 4D).

The very few surviving postembryonic 14B neurons

project dorsally through the lateral cylinder and cross

the midline close to the dorsal surface. They do not

have a tract that can be detected by neuroglian

labeling.

Lineage 18 (NB 3-4 or 2-4)
Only hemilineage 18B is found in the adult (Truman

et al., 2010). The hemilineage is absent from T1 and in

T2 and T3 its cells lie at the dorsal, anterior edge of

the neuromere. The 18B tract can be identified through-

out metamorphosis (Fig. 1A–C). In early and mid-pupa

18B enters the neuropil from a lateral position and is

difficult to discriminate from the closely associated 9A

and 17A tracts (Figs. 1A4–5, B4–5). In adult, 18B

enters the neuropil from a dorsal lateral position and

projects medially at a mid dorsoventral plane (Fig.

1C5–6). Immortalization of 18B expression in line

R27A09 confirmed the adult hemilineage 18B trajectory

(Fig. 3D–F), showing that it projects medially to cross

the midline anterior to the 2A tracts, consistent with its

larval projection (Fig. 3D).

Lineages that contribute to the posterior
commissure
Neurite bundles from five lineages contribute to the

posterior commissure in the larva. Three (5, 6, and 12)

approach the intermediate posterior (iP) commissure

from a ventral location, forming a structure termed the

“ventral arch,” and two (19 and 23) approach from lat-

eral or dorsal locations. Lineage 6 also contributes a

hemilineage (6A) that joins the dorsal posterior (dP)

commissure (Truman et al., 2004). The larval topology

of the posterior commissure persists into the adult.

Lineage 5 (NB 5-3)
In the larva, the 5A neurons die and the 5B neurons

form the anteriormost bundle of the ventral arch (Tru-

man et al., 2010). In early metamorphic stages the 5B

tract is strongly labeled, compact, and recognizable

(Fig. 1A1–2,B1–2) in all thoracic neuromeres. In adult,

5B has a less compact structure and is still the anteri-

ormost of a trio of medial projections along with 6B

and 12B that converge on the midline (Fig. 1C3–5).

Immortalizing the larval 5B expression using line

R86D02 provides a strong and clean signal that con-

firms its identity (Fig. 5A).

Lineage 6 (NB 5-2)
In the thoracic neuromeres both 6A and 6B hemili-

neages survive in the adult. The tracts from both hemili-

neages project dorsally in all three thoracic

neuromeres, with 6B crossing the midline as the middle

of the trio of tracts of the ventral arch (Figs. 1C3, 4).

6B is visible at all stages of metamorphosis, with a sim-

ilar pattern in all three thoracic neuromeres (Fig. 1A–

C). As in larva, 6B is posterior to 5B throughout its

length, and extends more dorsally. In T3, 5B and 6B are

closely associated and it is difficult to resolve the sepa-

rate tracts for most of their length (Figs. 1C5, 5B).

Hemilineage 6A produces one of the dorsalmost pro-

jecting tracts in the adult (Figs. 1C4–5, 2 and 5B–C)

and forms the dorsal component of the posterior com-

missure (dP) (Figs. 2 and 5B–C). In T1 it projects

almost perpendicularly from ventral to dorsal (Figs. 1C,

2C, 5C). In T2, 6A projects laterally and dorsally (Figs.

1C, 2F, 5C). In T3, 6A projects anteriorly and dorsally

and terminates in dorsal neuropil at the interface

between the T2 and T3 neuromeres (Figs. 1C, 2E, 5C).

Lineage 12 (NB 6-1)
Both 12A and 12B hemilineages survive in the adult in

T1 and T2, but in T3 only 12B persists. The identity of

12B was confirmed by immortalized expression using

line R15D11 (Fig. 5E) and 12A tract by immortalized

expression with line R24B02 (Fig. 5D). In early and
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mid-pupa, hemilineage 12A and 12B share a common

entry point into the neuropil (Fig. 1A1–3). In adult, the

12A and 12B tracts separate into distinct tracts with

no physical association with 12B projecting ventrally

and medially and 12B projecting dorsally and laterally

(Fig. 1C4).

In all thoracic neuromeres 12B forms the posterior-

most part of the ventral arch, along with 5B and 6B

Figure 6. Validation of the hemilineage tract identification for hemilineages associated with the leg neuropil. Data organization as in Fig.

3. (A–D) Lineage 3 revealed by an elav-MARCM clone of lineage 3 containing both the A and B hemilineages. (A) Horizontal section show-

ing lineage 3 projections in T1–T3. (B,C) 5 lm transverse optical transverse sections through the stack in panel C in T1 (B) and T2 (C) to

illustrate the different tracts associated with lineage 3. (D) Horizontal plane of lineage 3 in T3 from a more dorsal plane than in A. (E)

Hemilineage 4 revealed by immortalization of the larval expression pattern of line R51D02. (F) Hemilineage 9A revealed by immortalization

of the larval expression pattern of line R48H02. (G) Hemilineage 15B revealed by the expression pattern of line OK371, (H) Hemilineage

16B revealed by the expression pattern of line OK371. (I) Hemilineage 21A revealed by the expression pattern of line OK371. (J) Hemiline-

age 20/22A revealed by immortalization of the larval expression pattern of line R19H10. Scale bar 5 100 lm.
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(Fig. 1C4–5). In T3, 12B follows the same projection

but for most of its proximal segment it is not possible

to distinguish it from 5B and 6B. The three can only be

distinguished at the distal points as they separate prior

to crossing the midline.

In T1 and T2, 12A projects into dorsal neuropil and is

readily detectable in both neuromeres (Figs. 1C4–5,

2C–F, 5D). In T1, 12A projects medially and dorsally

(Fig. 1C) between 6A and 3 and passing ventrally under

23B (Fig. 2C) to merge with the tract from 11A. In T2,

12A also projects dorsally and laterally, but is more ante-

riorly inclined than its T1 counterpart (Figs. 1C4–5, 5D).

Lineage 19 (NB 6-2)
Both 19A and 19B hemilineages are found in the adult

but from the larval stages the two hemilineages form

separate and distinct projections into the neuropil. Both

hemilineages are evident in all three thoracic neuro-

meres at all stages of metamorphosis. Immortalized

expression of GFP from larval-specific hemilineages

using lines R84E06 (for 19B) and R50C03 (for 19A) was

used to confirm the 19A and B identities (Fig. 5F–G).

Expression in line R84E06 also includes strong expres-

sion in haltere sensory afferents (asterisk in Fig. 5G)

but the 19B projections can be identified.

In adult T1, the 19A tract enters the neuropil in the dor-

sal posterior quarter completely separate from 19B and

projects ventrally and medially into posterior ipsilateral

neuropil (Fig. 1C6). In T2, the neuroglian-labeled tract is

short and only evident around the point of entry into the

neuropil in the posterior dorsal quarter (Figs. 1C4, 5F). In

T3, the 19A entry point into T3 neuropil is at the posterior-

most point of the T3 neuropil entering from the dorsal sur-

face and projects anteriorly and ventrally (Fig. 5F).

In T1, hemilineage 19B contains only a few cells, and

its tract is not detectable as a single tract as it enters

the neuropil as small part of a fused tract with 11A and

23B (Fig. 1C6). In T2, the 19B tract is easily detected

as a strongly labeled tract that enters the neuropil dor-

sally at the posterior margin of the neuromere and proj-

ects medially to cross the midline at the posterior

margin of the T2 neuropil (Figs. 1C6, 5G). In T3, the

19B tract is not as strongly labeled as in T2 but it is

readily detectable as it enters the dorsal neuropil and

projects medially and anteriorly alongside 23B (Figs.

1C6, 5G), but there are many fewer neurons in this

tract compared to T2.

Lineage 23 (NB 7-4)
In the adult, only hemilineage 23B survives (Truman

et al., 2010). It is identifiable at all stages of develop-

ment and is one of the most characteristic features of

the adult scaffold (Fig. 1A–C). In adult T1, 23B enters

the VNS dorsally as part of shared tract with 11 and 19

(Fig. 1C6). As it crosses the midline 23B turns ventrally

to merge with 12B (Figs. 1C5–6, 2B, 5H). In T2, 23B

enters the VNS dorsally and projects medially but

unlike in T1, 23B is distinguishable from 11B and 19B.

As 23B nears the midline it turns anteriorly and ven-

trally to meet the dorsally projecting 12B to form a

fused 12B/23B bundle that crosses the midline (Figs.

1C5, 2F, 5H). In T3, 23B enters from dorsal and proj-

ects medially and ventrally to meet the dorsally projec-

ting 12B (Figs. 1C5–6, 2H, 5H). 23B is one of the only

bundles to transit the neuropil dorsal to ventral, rather

than ventral to dorsal (see transverse sections in Fig.

5H). It is the single longest dorsoventral tract in the

neuropil and forms an important landmark in the medial

cluster formed by 12B, 6B, and 5. Immortalization of

GFP expression in hemilineage 23B with line R77C10

confirms its identity (Fig. 5H).

Leg neuropil hemilineages
Eighteen hemilineages contribute neurons to each hemi-

segmental leg neuropil. Half of these (1A, 1B, 8A, 12B,

13A, 13B, 19A, 23) are either commissural neurons or

siblings of commissural cells and are dealt with above.

The remaining leg hemilineages are detailed below.

Lineage 3 (NB 7-1)
Both 3A and 3B hemilineages are found in the adult

and the tracts of both hemilineages are evident

throughout metamorphosis. Validation of the tracts for

lineage 3 was achieved by immortalization of the larval

expression of line R31H10 (3A) and R41G09 (3B). The

cells of both hemilineages are displaced in the adult

and these lines enabled us to identify the complex pro-

jections of both hemilineages. The 3A and 3B tracts

enter the neuropil at the same point (Figs. 1C4–6 and

6A–D) and project together dorsally to the mid-neuropil,

where they diverge (Figs. 1A3–4,1B3–4, 2C,F,I, 6A–D).

The 3B neurons innervate the leg neuropil and their

axons bend laterally to the dorsal ipsilateral leg neuro-

pil. They are similar in all thoracic leg neuropils.

The axons of the 3A neurons continue dorsally after

diverging from the 3B cells and project into the dorsal

flight neuropil. The 3A tracts in T1 and T2 are large and

strongly labeled and terminate in dorsal neuropil (Fig.

6B,C). In T3, the 3A tract contains a much-reduced

number of fibers, produced by neuronal death during

metamorphosis, and project anteriorly into dorsal T2

(asterisk in Fig. 6D).

Lineage 4 (NB 3-1)
Only hemilineage 4B is present in the adult (Truman

et al., 2010). In early pupal stages the 4B projection is
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easily recognized as a strongly labeled, medially origi-

nating, and dorsally projecting tract (Fig. 1A3–4). In

later pupal and adult stages the 4B the tract is very dif-

ficult to detect from the neuroglian signal alone. Identi-

fication of 4B in later stages was heavily dependent on

the immortalized expression of line R51D02 (Harris

et al., 2015), which provides a weak but detectable sig-

nal that confirms the posterior displacement of the 4B

cells and its close association with the hemilineage 21

tract with the 4B axons projecting anteriorly into the

lateral region of ipsilateral leg neuropil (Fig. 6E).

Lineage 9 (NB 3-5)
Only hemilineage 9A is evident in the adult (Truman

et al., 2010). The 9A tract is evident in all three tho-

racic neuromeres at all stages of metamorphosis (Fig.

1A–C). In the adult, 9A is easily identified and con-

firmed by immortalization with line R48H02 (Fig. 6F). In

T1, the 9A tract enters the neuropil from an anterior

position alongside 7A and 8B. It is distinguishable as

the fine branch that defasciculates and turns laterally

at the point at which 8B turns medially, anterior to the

2A tract (Fig. 1C5). In T2 and T3, 9A resembles the

larval projection and projects medially and ventrally to

the midline with the characteristic arc anterior to 7A

and 8B (Fig. 1C3–4 and arrows in 6F).

Motor lineages: lineages 15 (NB2-3) and 24
(NB4-4)
The lineage 15 NB produces both motoneurons and

glia, with the 15A siblings being glia (Baek et al.,

2013), and the 15B daughters becoming motoneurons

(Truman et al., 2010). Hemilineage 15B is revealed by

line OK371, which has lineage-specific expression that

can be readily traced through metamorphosis (Fig.

1A–C). In early (Fig. 1A2–4) and mid pupa (Fig. 1B2–

4) the 15B tract is strongly labeled for neuroglian but

in adult the 15B tract is only weakly labeled, but its

entry into the neuropil can still be seen in all thoracic

neuromeres simply due to its large size and structure

(Figs. 1C3–6 and 6G). The 15B tract merges with the

24B tract to form a single tract which projects in a

posterior medial direction from the point of entry to

the neuropil (Fig. 6G).

Lineage 24 was not uncovered by Truman et al.

(2004) and was described by Brown and Truman

(2009). In the adult, only hemilineage 24B survives (Tru-

man et al., 2010) and produces leg motor neurons that

innervate proximal leg segments (Baek and Mann,

2009; Brierley et al., 2012). The adult morphology of

24B is in accord with other descriptions of leg motor

neurons (e.g., N€assel et al., 1986), and is similar to, but

distinct from, hemilineage 15B in both larva and adult,

The adult lineage 24 neuroglian tract is closely associ-

ated with its 15B counterpart and is indistinguishable

from it.

Lineage 16 (NB 1-1)
Only hemilineage 16B is found in the adult and is

revealed in OK371, and can be directly traced through

metamorphosis (Fig. 6H). The 16B tract can be readily

identified in early (Fig. 1A3) and mid-pupa (Fig. 1B4

and 5). In the adult it is closely associated with 8A

(compare Figs. 4B and 6H). In T1, it is not possible to

distinguish the 16B and 8A tracts (Figs. 1C5–6, 4B,

6H). In T2 and T3, though, 8A and 16B enter the neu-

ropil as a single tract and project medially but then

diverge with 16B taking a more anterior pathway

(Figs. 1C5 and 6H).

Lineage 21 (NB 4-3)
Hemilineage 21A is a moderate-sized cluster of local

interneurons, while 21B consists of a couple of motoneur-

ons, with the remainder of that lineage undergoing pro-

grammed cell death (Truman et al., 2010). The 21A tract

is identifiable at all stages of metamorphosis (Fig. 1A–C)

and is revealed in line OK371, making it possible to trace

the lineages directly from larva to adult (Fig. 6I). 21A has

the same morphology in all three thoracic neuromeres

and arises in the posterior quarter just medial to 20A/

22A and projects anteromedially into ipsilateral neuropil

(Fig. 6I). In all thoracic neuromeres the tract shows a

characteristic “T”-shaped bifurcation producing separate

medial and lateral projections (Figs. 1A–C and 6I).

Lineages 20/22 (NB 5-4; 22 is a new:
NB 5-4b)
In the larva, 20 and 22 are neighboring lineages whose

progeny show almost identical projection patterns into

the leg neuropil. Both consist almost entirely of the A

hemilineages, with the B hemilineage represented by

one or two motoneurons with the remainder dying (Tru-

man et al., 2010; Brierley et al., 2012). We have been

unable to distinguish the two hemilineages in the adult

and consequently treat them as a single hemilineage.

At all stages of metamorphosis the 20A/22A cells

remain closely associated in the posterior lateral quar-

ter of all thoracic neuromeres (not shown). The identifi-

cation of 20A/22A was confirmed by immortalized

expression of R19H10 line, which expresses in the

larval 20A/22A hemilineages (Fig. 6J).

The 20A/22A tract is readily identified at all stages

of development (Fig. 1A–C). In the adult, the entry of

the 20A/22A tract rotates with the segmental rotation

of the leg neuropil. In T1 the tract is lateral and ventral

to 21A (Figs. 1C4–5, 6J), entering the neuropil just
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posterior to the T1 leg nerve, projecting anteriomedially

to terminate in ipsilateral neuropil (Fig. 8C). In T2,

20A/22A enters the neuropil lateral to 4A and ventral

to 21A and projects anteriorly to terminate in ipsilateral

neuropil (Figs 1C2–3, 6J). In T3, 20A/22A is the poste-

riormost tract, entering posterior neuropil from a medial

position (Figs. 1C5 and 6J).

Miscellaneous lineages
Lineage 2 (NB 2-1)
The embryonic and postembryonic progeny of this NB

can be readily visualized from larva to adult using the

GAL4 line R50G08. Postembryonic extensions of the lin-

eage are found only in the thoracic neuromeres and are

represented by only the 2A hemilineage (Truman et al.,

2010). The 2A tracts are readily identifiable at all

stages, and show a consistent projection in all three

thoracic neuromeres (Fig. 1A–C). In adult, 2A enters

the neuropil from a mid-ventral position close to the

anterior midline and projects to the dorsal surface of

the neuromere before turning laterally. Within each neu-

romere the two paired hemilineage 2A tracts form a

characteristic doublet projection in the anterior half of

the neuromere either side of the midline and are among

the most easily recognized of the neuroglian bundles

(Fig. 7A).

Lineage 0 (MNB)
Lineage 0 is produced by the median unpaired (NB0)

and is present in all three thoracic neuromeres with a

cell cluster located at the posterior midline of each

neuromere. The 0 tract is readily identifiable in all three

thoracic neuromeres at all stages of metamorphosis

(Fig. 1A–C). The 0 tract originates as an unpaired tract

from the cell cluster at the ventral posterior midline

and projects anteriorly and dorsally along the midline

between the 5B, 6B, and 12B tracts. In all three tho-

racic neuromeres, the 0 tract terminates on the midline

in dorsal neuropil at the same plane as the 2A tract (

Figs. 1C5–6).

We were unable to find a GAL4 line that reliably pre-

serves expression in lineage 0 to definitively identify

the neuroglian tract but its characteristic features as an

unpaired, midline bundle make its identification

unequivocal from the neuroglian signal alone.

Lineage 11 (NB 6-4 or 7-2)
Lineage 11 is the most segmentally specialized lineage

in the VNS, with a unique combination of hemilineages

in each thoracic neuromere. 11A is present in T1

and T2, 11B is found only in T2 and both are absent

from T3.

In the adult T1, 11A enters the VNS as part of medi-

ally projecting bundle that includes 11, 19, and 23 (Fig.

1C6) and cannot be resolved from these but is revealed

by the immortalized expression of GFP in line R26B05,

which shows that the lineage 11A neurites project pos-

teriorly, but do not cross the midline (Fig. 7B).

In T2, 11A enters the neuropil as part of a tract that

includes 19 (Figs. 1C4, 6). On entering the neuropil the

tracts diverge and 11A projects anteromedially and

anterior to 19, but stops short of the midline (Fig. 1C6).

11B projects more dorsally than 11A and enters the

neuropil at a more dorsal point and makes a character-

istic turn as it enters the neuropil to project anteriorly

and terminate in the posterior lateral neuropil

(Figs. 1C6, 7B).

Figure 7. Validation of the hemilineage tract identification for the

anterior medial lineages. Data organization as in Fig. 3. (A) Hemi-

lineage 2A revealed by expression pattern of line R50G08. (B)

Hemilineage 11 revealed by immortalization of the larval expres-

sion pattern of line R26B05. (C–E) Hemilineage 17A revealed by

immortalization of the larval expression pattern of line R78A08.

(D,E) Transverse sections through image shown in panel B at the

levels indicated by the arrows. Scale bar 5 100 lm.
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Lineage 17 (NB 2-5)
In larva lineage, 17 is one of three anterodorsal clus-

ters. It is comprised of only the 17A hemilineage (Tru-

man et al., 2010) and was found in only T2 and T3. It

is characterized by a tract that projects medially

towards the midline but turns sharply dorsally and

hooks back upon itself to produce a characteristic

hooked projection (Truman et al., 2004). In the adult,

this shape is even more pronounced, forming a large

loop in the anterior of the segment.

17A is seen at all stages (Fig. 1A5,B5) as a laterally

originating tract that projects medially in the anterior

third of the neuromere (Fig. 1A5,B5). In adult, 17A

often stains weakly (Fig. 1C6) but in some examples it

is clearly labeled. In both T2 and T3, 17A enters the

neuropil from a dorsal lateral position in the anterior of

the neuromere and projects anteromedially (Figs. 1C6,

7C–E). We had difficulty isolating a GAL4-expressing

line to confirm the identity of the 17A tract. The best

genotype created by immortalization of line R78A08

marks 17A most of the time, but also reveals lineage

11, and occasionally other lineages. Despite this com-

plication, the immortalized line showed that the adult

17A is still distinguished by the characteristic hook-

shaped projection (Fig. 7C–D).

DISCUSSION

By defining the rules by which neuronal circuits are

assembled during development, we have a chance to

understand the functional logic and evolution of neuro-

nal networks. As demonstrated with the vertebrate spi-

nal cord, knowledge of the developmental origins of the

interneuron pools has been vital to building an under-

standing of the functional organization of the complex

sensory motor systems generating locomotor behavior

(Grillner and Jessell, 2009). Drosophila is an equally

powerful, well-understood model for developmental biol-

ogy, with amenable genetics and a sophisticated array

Figure 8. Identifying the larval commissures established by larval hemilineage in the adult VNS. (A) Sagittal section (10 lm) through the

larval VNS labeled to reveal the neuroglian scaffold. (B) Sagittal section (10 lm) through the adult VNS labeled to reveal the neuroglian

scaffold. The positions of the commissural processes of the postembryonic lineages are indicated with colored spots. The color of the

spot indicates which lineage forms that commissure. The collective larval commissures are indicated by the dotted lines encircling the

individual projections. (C–L) Sagittal sections (10 lm) through double-labeled adult VNS showing the neuroglian scaffold (magenta) and

the structure of the hemilineage revealed by GFP expression (green). (C–F) The lineages forming the larval anterior intermediate commis-

sure. The lineages anterior to lineage 2 (10B and 18B) are in the blue circle and lineages posterior to lineage 2 (7B and 8B) are in the red

circle. (G–I) The lineages forming the larval posterior intermediate commissure in the orange circle. (J–L) The lineages forming the larval

anterior intermediate commissure in the green circle.
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of locomotor behaviors controlled by a relatively small

nervous system. We have known for years that the neu-

ronal populations controlling locomotion in the VNS are

produced by distinct neural precursors called neuro-

blasts (Thomas et al., 1984). Truman et al. (2010)

described the development and organization of the

postembryonic secondary neurons in the larva and the

modular nature of hemilineages. Despite the obvious

power of a developmental approach and suitability of

Drosophila, a development-based analysis of circuitry in

the VNS has been slow in coming. The reasons for this

are due primarily to the complex changes that take

place as the larval secondary neurons differentiate into

their adult forms during metamorphosis and that the

tools that allowed the analysis of the larval system, the

neurotactin immunoreactivity, stopped at the onset of

metamorphosis. Understanding how the developmental

units in the larva integrate into the adult nervous sys-

tem is very difficult without a tool to label the tracts.

Analyzing neuroglian expression at key stages in the

metamorphosis of the adult VNS, we have traced the

adult fate of each of the larval hemilineage neurite bun-

dles to generate a map of neuroglian-positive tracts in

the adult VNS—based on the full set of 31 hemilineages

that contribute interneurons to each hemisegmental unit

of the VNS. By double labeling any neuron-specific

marker with neuroglian it is possible to determine pre-

cisely which hemilineage the neuron belongs to by identi-

fying its associated neuroglian positive bundle. Thus, it is

now possible to assign any secondary neuron in the tho-

racic neuromeres to its hemilineage of origin. This makes

neuroglian expression a powerful tool in understanding

the developmental organization of the adult VNS.

Validation
Although tracing the neuroglian scaffold through meta-

morphosis was without major complications, it was

nevertheless important that we independently validate

the work. To do this we used the genetic toolkit devel-

oped by Harris et al. (2015) to preserve larval

hemilineage-specific GAL4 expression patterns into adult

stage. Although the GFP signal in these immortalized

lines was not always complete enough to describe the

full projective field of the lineages, it was sufficient to

confirm the identity of each tract. In some cases the sig-

nal was weak and only detectable at significant levels in

the cell clusters and in the neuroglian bundles where

their neurites are most tightly bundled. In others,

although the larval expression was maintained in the

complete hemilineage, the expression pattern does

change and neurons not related to the original larval

expression pattern are also revealed. In these cases

care was taken to ensure that additional expression did

not cause misidentifications. Despite these minor limita-

tions, the immortalized expression was a powerful confir-

mation of the analysis of the neuroglian scaffold and we

are confident that the identifications of the neuroglian

tracts in all three thoracic neuromeres are correct.

An anatomical framework for the VNS
The description of the scaffold of neuroglian tracts

not only provides a tool to analyze the clonal origins of

the VNS it also provides a powerful framework to help

define its anatomical organization. An understanding of

neuronal organization in the neuropil requires a frame

of reference to define the structure of neurons and

describe their anatomical relationships. The work of

Merritt and Murphey (1992) and Boerner and Duch

(2010) have provided such frameworks for the adult

VNS based on the longitudinal tracts and commissures.

The hemilineage tracts add another dimension to this

architecture, revealing another set of organizational fea-

tures within the neuropil.

One value of this framework is that it can be used to

unravel the segmental organization of the fused neuro-

pils of the VNS. Since each neuromere is founded by a

specific set of NBs (Truman and Bate, 1988) and the

neuroglian bundles produced by their progeny create a

metamere-specific set of anatomical markers that

define each neuromere, we can use these structures to

describe the neuromere boundaries. This is best seen

in the horizontal plane of the mesothoracic neuromere

(Fig. 1C). The mesothoracic neuropil is defined anteri-

orly by the tracts from the anterior mesothoracic line-

ages 2, 9, 10, 7, 8, 16, and 15, all of which project

posteriorly into the mesothoracic neuromere. Similarly,

the posterior margin of the mesothoracic neuromere is

defined by the tracts from the posterior mesothoracic

lineages 3, 6, 0, 21, 11, and 19, all of which project

anteriorly into the mesothoracic neuromere. Thus, the

mesothoracic neuromere is encompassed by the projec-

tions of the mesothoracic lineages. The same principle

can be used to define the pro- and metathoracic neuro-

pils (Fig. 1C).

From this analysis it is evident that there is a region

of neuropil posterior to the lineage tracts of T1 and to

the anterior lineage tracts of T2 that falls outside these

boundaries. This region is the accessory mesothoracic

neuropil (AMN), a morphologically distinct subdivision of

the VNS (Merritt and Murphey, 1992) at the interface

between the pro- and mesothoracic neuromeres. It is

largely formed from the wing sensory afferents entering

the VNS via the anterior dorsal mesothoracic nerve

(Merritt and Murphey, 1992). Although the AMN is

known and described as a distinct structure, the line-

age tracts we present in this article provide a

D. Shepherd et al.
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framework that can be used to define its structure and

boundaries.

As well as defining the neuromere boundaries, the

lineage tracts also define another nonsegmental feature

of the VNS neuropil, the tectulum. Power (1948)

defined the tectulum as a “distinct subdivision of the

thoracic regions of the [VNS]. The region forms a

saddle-like structure located dorsally primarily over the

mesothoracic neuropil but extending over the posterior-

most region of the prothoracic neuromere and the ante-

riormost region of the metathoracic neuropil.” Despite

subsequent work this remains the best definition of the

tectulum. The neuroglian framework provides recogniz-

able boundaries that circumscribes the tectulum (Fig.

2) and allows a more precise definition. The tectulum

corresponds to the dorsal region of the neuropil poste-

rior to the anteriormost limits of the 12B tracts in T1

but dorsal to the tracts from 12B, 6B, 23, 17, and 18

in T2. It extends posteriorly through T2 to the entry

point of hemilineage 3A in T3. As with the neuromere

structure, the neuroglian bundles provide a clear and

precise tool for defining distinct regions of the VNS

neuropil.

Linking larval commissures to their adult
counterparts

The neuroglian tracts and immortalized lineage-

specific GFP also reveal the developmental origins of

adult VNS commissures. Truman et al. (2004) showed

that the postembryonic lineages crossed the midline via

specific and invariant commissural pathways and

defined four larval commissures formed by central neu-

rons. Using GFP to reveal the projections of the same

neurons in the adult, we can now provide a definitive

marker for each of these commissures and link the

larval commissures to the adult and relate these to

descriptions of the adult VNS commissures made by

Power (1948; Fig. 8). Although the larval commissures

are formed by the hemilineages are identifiable as dis-

tinct anatomical structures in larval stages, from our

work it is evident that most of the larval commissures

segregate as the different neuronal components are

drawn apart by the expansion of the neuropil during

pupation. As a consequence, the larval commissures

are not immediately recognizable in the adult as gross

anatomical structures in the adult VNS and can only be

described with direct reference to the GFP expression

in specific hemilineages as they cross the midline.

In the larva the 1A, 13B, and 14A tracts cross the

midline in the anterior ventral commissure with 1A

passing anterior to 2A and 13B and 14A passing poste-

rior to 2A (Truman et al., 2004). In the adult these neu-

rons relate to adult commissures, some of which were

identified by Power, and others that were not. In T1 nei-

ther of the commissures formed by both 1A and 13B/

14A was described by Power (1948). In T2, however,

the 1A tract is the accessory prothoracic commissure

and 13B/14A tract crosses in the ventral accessory

commissure of the mesothoracic neuromere. In T3, the

1A tract forms the accessory commissure of the meta-

thoracic neuromere but the 13B/14A commissure was

not identified by Power (1948).

In larva, hemilineages 10 and 18 cross the midline in

the anterior intermediate commissure. The adult projec-

tions from these hemilineages segregate to form two

commissures, both of which pass anterior to 2A tract,

with 10 being more ventral but neither correspond to a

commissure described by Power (1948).

The tracts from hemilineages 5, 6B, 7, 8, and 12B

form the posterior intermediate commissure in larva.

In adult T2 and T3 neuromeres, the commissure

formed by these neurons segregate into two commis-

sures. The anteriormost contain hemilineages 7B and

8B and form the two most robust commissures of the

adult VNS; in T2 they form the commissure of the

mesothoracic neuromere and in T3 the haltere com-

missure. The commissure formed by 6B, 12B, and 5B,

however, form a posterior commissure not identified

by Power (1948).

The 6A tract is part of the posterior dorsal commis-

sure in the larva, the dorsalmost of the larval commis-

sures, and found in all three thoracic neuromeres. In

adult, the commissure containing 6A is in the tectulum

and forms part of three primary dorsal thoracic com-

missures: the posterior dorsal prothoracic commissure

in T1, the posterior dorsal mesothoracic commissure in

T2 and the posterior dorsal metathoracic commissure

in T3.

In summary, the work presented in this article pro-

vides a key to understanding the developmental organi-

zation of the neuropil of the VNS, and enables work to

understand clonal origin of different populations of neu-

rons. With the simple expedient of colabeling neurons

with anti-neuroglian and identifying the neuroglian tract

containing the primary neurites, it should be possible to

identify parent lineage of virtually all secondary neurons

in the VNS. From this knowledge it should be possible

to place neurons into a functional and developmental

context and begin to unravel the functional organization

of neurons in the Drosophila VNS and other insect

groups.
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