50 research outputs found

    LOGICAL ANALYSIS AND ANGIOSPERMIC FAMILIES

    Get PDF

    Dissociation of the benzene molecule by UV and soft X-rays in circumstellar environment

    Full text link
    Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by UV and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time of flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum ultraviolet (21.21 eV) and soft X-ray (282-310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50% of the ionized benzene molecules survive to UV dissociation while only about 4% resist to X-rays. Partial ion yields of H+ and small hydrocarbons such as C2H2+, C3H3+ and C4H2+ are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 were obtained.Comment: The paper contains 8 pages, 9 figures and 4 tables. Accepted to be published on MNRAS on 2008 November 2

    Destruction and multiple ionization of PAHs by X-rays in circumnuclear regions of AGNs

    Get PDF
    The infrared signatures of polycyclic aromatic hydrocarbons (PAHs) are observed in a variety of astrophysical objects, including the circumnuclear medium of active galactic nuclei (AGNs). These are sources of highly energetic photons (0.2 to 10 keV), exposing the PAHs to a harsh environment. In this work, we examined experimentally the photoionization and photostability of naphthalene (C10_{10}H8_{8}), anthracene (C14_{14}H10_{10}), 2-methyl-anthracene (C14_{14}H9_{9}CH3_{3}) and pyrene (C16_{16}H10_{10}) upon interaction with photons of 275, 310 and 2500 eV. The measurements were performed at the Brazilian Synchrotron Light Laboratory using time-of-flight mass-spectrometry (TOF-MS). We determined the absolute photoionization and photodissociation cross sections as a function of the incident photon energy; the production rates of singly, doubly and triply charged ions; and the molecular half-lives in regions surrounding AGNs. Even considering moderate X-ray optical depth values (Ď„=4.45\tau = 4.45) due to attenuation by the dusty torus, the half-lives are not long enough to account for PAH detection. Our results suggest that a more sophisticated interplay between PAHs and dust grains should be present in order to circumvent molecular destruction. We could not see any significant difference in the half-life values by increasing the size of the PAH carbon backbone, NC_C, from 10 to 16. However, we show that the multiple photoionization rates are significantly greater than the single ones, irrespective of the AGN source. We suggest that an enrichment of multiply charged ions caused by X-rays can occur in AGNs.Comment: 20 pages (appendix: 3 pages), 10 figures, 4 tables. Accepted for publication in the Montly Notices of the Royal Astronomical Society (MNRAS). Accepted 2019 April

    Ionisation and dissociation of cometary gaseous organic molecules by solar wind particles I: Formic Acid

    Get PDF
    In order to simulate the effects of energetic charged particles present in the solar wind colliding with the cometary gaseous formic acid molecule (HCOOH), laboratory experiments have been performed. The absolute ionisation and dissociation cross sections for this molecule interacting with solar wind particles were measured employing fast electrons in the energy range of 0.5 to 2 keV and energetic protons with energies varying from 0.128 to 2 MeV. Despite the fact that both projectiles lead to a very similar fragmentation pattern, differences in the relative intensities of the fragments were observed. Formic acid survives about 4-5 times more to the proton beam than to the energetic electron collision.The minimum momentum transfer in the electron impact case was estimated to be 3-38% larger than the minimum momentum transfer observed with the equivelocity protons. The UV photodissociation rates and half-lives for HCOOH are roughly closer to the values obtained with energetic electrons. It is consequently important to take electron impact data into account when developing chemical models to simulate the interplanetary conditions.Comment: 11 pages, 7 figures, 5 tables, Accepted to be published in MNRA

    Photostability of gas- and solid-phase biomolecules within dense molecular clouds due to soft X-rays

    Full text link
    An experimental photochemistry study involving gas- and solid-phase amino acids (glycine, DL-valine, DL-proline) and nucleobases (adenine and uracil) under soft X-rays was performed. The aim was to test the molecular stabilities of essential biomolecules against ionizing photon fields inside dense molecular clouds and protostellar disks analogs. In these environments, the main energy sources are the cosmic rays and soft X-rays. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing 150 eV photons. In-situ sample analysis was performed by Time-of-flight mass spectrometer (TOF-MS) and Fourier transform infrared (FTIR) spectrometer, for gas- and solid- phase analysis, respectively. The half-life of solid phase amino acids, assumed to be present at grain mantles, is at least 3E5 years and 3E8 years inside dense molecular clouds and protoplanetary disks, respectively. We estimate that for gas-phase compounds these values increase one order of magnitude since the dissociation cross section of glycine is lower at gas-phase than at solid phase for the same photon energy. The half-life of solid phase nucleobases is about 2-3 orders of magnitude higher than found for amino acids. The results indicate that nucleobases are much more resistant to ionizing radiation than amino acids. We consider these implications for the survival and transfer of biomolecules in space environments.Comment: 10 pages, 5 figures, 2 tables. Accepted to be published in MNRA

    A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales

    Full text link
    The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plants” series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world
    corecore