172 research outputs found
Land-based climate solutions for the United States
Funding Information: We thank many colleagues for helpful discussion and feedback during the preparation of this analysis, anonymous reviewers for constructive criticism, and J.L. Schuette for help with data assembly. Financial support was provided by the U.S. Department of Energy Great Lakes Bioenergy Research Center (Award DEâSC0018409), the U.S. National Science Foundation Longâterm Ecological Research Program (DEB 1832042), the USDA Longâterm Agroecosystem Research program, and Michigan State University AgBioResearch. Additional support (PS) is from the SoilsâRâGGREAT (NE/P019455/1) and CIRCASA (Agreement 774378) projects of the European Unionâs Horizon 2020 Research and Innovation Programme (Award 774378); and (KP) the U.S. Department of Energy Advanced Research Projects AgencyâEnergy program (Award DEâAR0000826). KP serves as a partâtime advisor to Indigo Ag, Inc., a company that markets soil carbon sequestration credits. The authors declare no other potential conflicts of interest. Publisher Copyright: © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.Peer reviewedPublisher PD
Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells
It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions
Creativity and commerce: Michael Klinger and new film history
The crisis in film studies and history concerning their legitimacy and objectives has provoked a reinvigoration of scholarly energy in historical enquiry. 'New film history' attempts to address the concerns of historians and film scholars by working self-reflexively with an expanded range of sources and a wider conception of 'film' as a dynamic set of processes rather than a series of texts. The practice of new film history is here exemplified through a detailed case study of the independent British producer Michael Klinger (active 1961-87) with a specific focus on his unsuccessful attempt to produce a war film, Green Beach, based on a memoir of the Dieppe raid (August 1942). This case study demonstrates the importance of analysing the producer's role in understanding the complexities of film-making, the continual struggle to balance the competing demands of creativity and commerce. In addition, its subject matter - an undercover raid and a Jewish hero - disturbed the dominant myths concerning the Second World War, creating what turned out to be intractable ideological as well as financial problems. The paper concludes that the concerns of film historians need to engage with broader cultural and social histories. © 2010 Taylor & Francis
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Determinants of riverine migration success by Atlantic salmon (Salmo salar) smolts from rivers across the UK and Ireland
There is some evidence that the river migration success of Atlantic salmon smolts, on their first migration to sea, varies both spatially and temporally. However, we have only a poor understanding of what may be driving this variation. In this study, we used acoustic telemetry to quantify the spatial and temporal variations in river migration success in Atlantic salmon smolts on their first migration to sea. In total 4120 Atlantic salmon smolts migrating through 22 rivers in Scotland, England, Ireland, and Northern Ireland over multiple years were included in the study. Individuals were defined as successful migrants if detected leaving the river to enter marine waters. The results show significant temporal (up to 4âyears) and spatial (river) variations in migration success, with overall between-river migration success varying from 3.4% to 97.0% and between years from 3.4% and 61.0%. Temporal variation in migration success was river specific, with some rivers being more temporally stable (exhibiting little variation between years) than others. Across all rivers and years, individual migration success was predicted positively by body condition and negatively by tag burden. The rate of migration success for a population (migration success standardized to a common river distance [proportionâkmâ1]) was predicted by a number of environmental factors. The proportion of river catchment that comprised wetland and woodland positively predicted migration success, whereas the proportion of grassland and peatland in a catchment negatively predicted the rate of migration success. Although the mechanisms through which these effects may be operating were not directly examined in this study, we discuss some potential routes through which they may occur
Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis
- âŠ