181 research outputs found

    Intraseasonal Variations in Tropical Energy Balance: Relevance to Climate Sensitivity?

    Get PDF
    Intraseasonal variability of deep convection represents a fundamental mode of organization for tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, here we examine the projection of ISOs on the tropically-averaged heat and moisture budget. One unresolved question concerns the degree to which observable variations in the "fast" processes (e.g. convection, radiative / turbulent fluxes) can inform our understanding of feedback mechanisms operable in the context of climate change. Our analysis use daily data from satellite observations, the Modern Era analysis for Research and Applications (MERRA), and other model integrations to address these questions: (i) How are tropospheric temperature variations related to that tropical deep convection and the associated ice cloud fractional amount (ICF), ice water path (IWP), and properties of warmer liquid clouds? (ii) What role does moisture transport play vis-a-vis ocean latent heat flux in enabling the evolution of deep convection to mediate PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007 GRL ) whereby a composite time series of various quantities over 60+ ISO events is built using tropical mean tropospheric temperature signal as a reference to which the variables are related at various lag times (from -30 to +30 days). The area of interest encompasses the global oceans between 20oN/S. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. The decrease in net TOA radiation that develops after the peak in deep convective rainfall, is part of the response that constitutes a "discharge" / "recharge" mechanism that facilitates tropical heat balance maintenance on these time scales. However, water vapor and hydrologic scaling relationships for this mode of variability cast doubt on the utility of ISO variations as proxies for climate sensitivity response to external radiatively forced (e.g. greenhouse gas-induced) climate change

    Microstructural and mechanical characterisation of post-tentioning strands following elevated temperature exposure

    Get PDF
    Prestressing strands lose strength and become more susceptible to creep deformation when they are heated during a fire. The consequent loss in prestressing force could under certain conditions result in structural collapse, potentially outwith the heated region of the structure. This paper describes a test programme characterising the changes in microstructure of steel prestressing tendons exposed to elevated temperatures. The residual strength tests, hardness testing, and elevated temperature mechanical test were performed to demonstrate how recovery and recrystallisation of the initially work-hardened steel produce changes in its mechanical properties at elevated temperatures. The research results of this paper are beneficial not only in the fire design of post-tensioned structures using modern prestressing steel, but also in the assessment of the tendons’ residual strength after being affected by fire

    Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic

    Get PDF
    Although assessments of winter carryover effects on fitness-related breeding parameters are vital for determining the links between environmental variation and fitness, direct methods of determining overwintering distributions (e.g., electronic tracking) can be expensive, limiting the number of individuals studied. Alternatively, stable isotope analysis in specific tissues can be used as an indirect means of determining individual overwintering areas of residency. Although increasingly used to infer the overwintering distributions of terrestrial birds, stable isotopes have been used less often to infer overwintering areas of marine birds. Using Arctic-breeding common eiders, we test the effectiveness of an integrated stable isotope approach (13-carbon, 15-nitrogen, and 2-hydrogen) to infer overwintering locations. Knowing the overwinter destinations of eiders from tracking studies at our study colony at East Bay Island, Nunavut, we sampled claw and blood tissues at two known overwintering locations, Nuuk, Greenland, and Newfoundland, Canada. These two locations yielded distinct tissue-specific isotopic profiles. We then compared the isotope profiles of tissues collected from eiders upon their arrival at our breeding colony, and used a k-means cluster analysis approach to match arriving eiders to an overwintering group. Samples from the claws of eiders were most effective for determining overwinter origin, due to this tissue\u27s slow growth rate relative to the 40-day turnover rate of blood. Despite taking an integrative approach using multiple isotopes, k-means cluster analysis was most effective when using 13-carbon alone to assign eiders to an overwintering group. Our research demonstrates that it is possible to use stable isotope analysis to assign an overwintering location to a marine bird. There are few examples of the effective use of this technique on a marine bird at this scale; we provide a framework for applying this technique to detect changes in the migration phenology of birds\u27 responses to rapid changes in the Arctic

    Characterization of Fast Ion Transport via Position-Dependent Optical Deshelving

    Full text link
    Ion transport is an essential operation in some models of quantum information processing, where fast ion shuttling with minimal motional excitation is necessary for efficient, high-fidelity quantum logic. While fast and cold ion shuttling has been demonstrated, the dynamics and specific trajectory of an ion during diabatic transport have not been studied in detail. Here we describe a position-dependent optical deshelving technique useful for sampling an ion's position throughout its trajectory, and we demonstrate the technique on fast linear transport of a 40Ca+^{40}\text{Ca}^+ ion in a surface-electrode ion trap. At high speed, the trap's electrode filters strongly distort the transport potential waveform. With this technique, we observe deviations from the intended constant-velocity (100 m/s) transport: we measure an average speed of 83(2) m/s and a peak speed of 251(6) m/s over a distance of 120 μ\mu

    Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions

    Get PDF
    Background: Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging “clock”, a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. Results: In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. Conclusions: Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock

    Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and beta1 adrenoreceptors

    Get PDF
    BACKGROUND: Clinical studies have now confirmed the link between short-term exposure to elevated levels of air pollution and increased cardiovascular mortality, but the mechanisms are complex and not completely elucidated. The present study was designed to investigate the hypothesis that activation of pulmonary sensory receptors and the sympathetic nervous system underlies the influence of pulmonary exposure to diesel exhaust particulate on blood pressure, and on the myocardial response to ischemia and reperfusion. METHODS & RESULTS: 6 h after intratracheal instillation of diesel exhaust particulate (0.5 mg), myocardial ischemia and reperfusion was performed in anesthetised rats. Blood pressure, duration of ventricular arrhythmia, arrhythmia-associated death, tissue edema and reperfusion injury were all increased by diesel exhaust particulate exposure. Reperfusion injury was also increased in buffer perfused hearts isolated from rats instilled in vivo, excluding an effect dependent on continuous neurohumoral activation or systemic inflammatory mediators. Myocardial oxidant radical production, tissue apoptosis and necrosis were increased prior to ischemia, in the absence of recruited inflammatory cells. Intratracheal application of an antagonist of the vanilloid receptor TRPV1 (AMG 9810, 30 mg/kg) prevented enhancement of systolic blood pressure and arrhythmia in vivo, as well as basal and reperfusion-induced myocardial injury ex vivo. Systemic β(1) adrenoreceptor antagonism with metoprolol (10 mg/kg) also blocked enhancement of myocardial oxidative stress and reperfusion injury. CONCLUSIONS: Pulmonary diesel exhaust particulate increases blood pressure and has a profound adverse effect on the myocardium, resulting in tissue damage, but also increases vulnerability to ischemia-associated arrhythmia and reperfusion injury. These effects are mediated through activation of pulmonary TRPV1, the sympathetic nervous system and locally generated oxidative stress

    The U.S. Inland Creel and Angler Survey Catalog (CreelCat): Development, Applications, and Opportunities

    Get PDF
    Inland recreational fishing, defined as primarily leisure-driven fishing in freshwaters, is a popular pastime in the USA. State natural resource agencies endeavor to provide high-quality and sustainable fishing opportunities for anglers. Managers often use creel and other angler survey data to inform state- and waterbody-level management efforts. Despite the broad implementation of angler surveys and their importance to fisheries management at state scales, regional and national coordination among these activities is minimal, limiting data applicability for larger-scale management practices and research. Here, we introduce the U.S. Inland Creel and Angler Survey Catalog (CreelCat), a first-of-its-kind, publicly available national database of angler survey data that establishes a baseline of national inland recreational fishing metrics. We highlight research and management applications to help support sustainable inland recreational fishing practices, consider cautions, and make recommendations for implementation

    Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE).

    Get PDF
    PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.Core funding for this project was provided by the National Institutes of Health (R01-CA172404, PI: S.J. Ramus; and R01-CA168758, PIs: J.A. Doherty and M.A.Rossing), the Canadian Institutes for Health Research (Proof-of-Principle I program, PIs: D.G.Huntsman and M.S. Anglesio), the United States Department of Defense Ovarian Cancer Research Program (OC110433, PI: D.D. Bowtell). A. Talhouk is funded through a Michael Smith Foundation for Health Research Scholar Award. M.S. Anglesio is funded through a Michael Smith Foundation for Health Research Scholar Award and the Janet D. Cottrelle Foundation Scholars program managed by the BC Cancer Foundation. J. George was partially supported by the NIH/National Cancer Institute award number P30CA034196. C. Wang was a Career Enhancement Awardee of the Mayo Clinic SPORE in Ovarian Cancer (P50 CA136393). D.G. Huntsman receives support from the Dr. Chew Wei Memorial Professorship in Gynecologic Oncology, and the Canada Research Chairs program (Research Chair in Molecular and Genomic Pathology). M. Widschwendter receives funding from the European Union’s Horizon 2020 European Research Council Programme, H2020 BRCA-ERC under Grant Agreement No. 742432 as well as the charity, The Eve Appeal (https://eveappeal.org.uk/), and support of the National Institute for Health Research (NIHR) and the University College London Hospitals (UCLH) Biomedical Research Centre. G.E. Konecny is supported by the Miriam and Sheldon Adelson Medical Research Foundation. B.Y. Karlan is funded by the American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. H.R. Harris is 20 supported by the NIH/National Cancer Institute award number K22 CA193860. OVCARE (including the VAN study) receives support through the BC Cancer Foundation and The VGH+UBC Hospital Foundation (authors AT, BG, DGH, and MSA). The AOV study is supported by the Canadian Institutes of Health Research (MOP86727). The Gynaecological Oncology Biobank at Westmead, a member of the Australasian Biospecimen Network-Oncology group, was funded by the National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 & 15/RIG/1-16. The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC; ID199600; ID400413 and ID400281). BriTROC-1 was funded by Ovarian Cancer Action (to IAM and JDB, grant number 006) and supported by Cancer Research UK (grant numbers A15973, A15601, A18072, A17197, A19274 and A19694) and the National Institute for Health Research Cambridge and Imperial Biomedical Research Centres. Samples from the Mayo Clinic were collected and provided with support of P50 CA136393 (E.L.G., G.L.K, S.H.K, M.E.S.)

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
    corecore