559 research outputs found

    Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Zn‐ion batteries

    Get PDF
    Rechargeable aqueous zinc‐ion batteries (AZBs), with their high theoretical capacity, low cost, safety, and environmental friendliness, have risen as a promising candidate for next‐generation energy storage. Despite the fruitful progress in cathode material research, the electrochemical performance of the AZB remains hindered by the physical and chemical instability of the Zn anode. The Zn anode suffers from dendrite growth and chemical reactions with the electrolyte, leading to efficiency decay and capacity loss. Recently, significant effort has been dedicated to regulating the Zn anode. Electrolyte manipulation, including tailoring the salt, additives, or concentration, is a useful strategy as the electrolyte strongly influences the anode's failure processes. It is thus worthwhile to gain an in‐depth understanding of these electrolyte‐dependent regulation mechanisms. With this in mind, this review first outlines the two main issues behind Zn anode failure, dendrite growth, and side reactions. Subsequently, an understanding of the electrolyte tailoring strategy, namely, the influence of the salt, additive, and concentration on the Zn anode, is provided. We conclude by summarizing the future prospects of the Zn metal anode and potential electrolyte‐based solutions

    Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications

    Get PDF
    As research efforts into the two-dimensional (2D) materials continue to mature, finding applications in which they can be productively used has become of greater interest. Applications in the energy sector are of particular importance, with the pressing need to decarbonize our economy and to live more sustainably. For a material to be optimal for an application we typically tailor their specific properties and characteristics to best fit with the desired parameters. In the past, this has included the forging of metal alloys or the doping of semiconductors, allowing us to controllably adjust the material properties. For two-dimensional materials, one of the best routes for such controlled manipulation is via forming a heterostructure, or hybrid, with another nanomaterial. In this review, we will explore the emergence of 0D-2D hybrid materials, where a 2D layered material is combined with a zero-dimensional (0D) nanoparticle or fullerene to adjust and enhance overall performance. We will cover the basics of their structure and modes of interaction, the different synthetic methods used for their assembly and preparation and review several energy applications in which promising results have already been achieved

    Resilient High Catalytic Performance of Platinum Nanocatalysts with Porous Graphene Envelope.

    Get PDF
    Despite the innumerable developments of nanosized and well dispersed noble metal catalysts, the degradation of metal nanoparticle catalysts has proven to be a significant obstacle for the commercialization of the hydrogen fuel cell. Here, the formation of Pt nanoparticle catalysts with a porous graphene envelope has been achieved using a single step low temperature vaporization process. While these Pt-Gr core-shell nanoparticles possess superior resilience to degradation, it comes at the cost of degraded overall catalyst efficacy. However, it is possible to combat this lower overall performance through inclusion of low concentrations of nitrogen precursor in the initial stage of single-step synthesis, inhibiting the formation of complete graphene shells, as verified by atomic resolution aberration-corrected transmission electron microscopy (AC-TEM) imaging. The resultant porous graphene encapsulated Pt catalysts are found to have both the high peak performance of the bare Pt nanoparticle catalysts and the increased resilience of the fully shielded Pt-Gr core-shells, with the optimal N-doped Pt-Gr yielding a peak efficiency of 87% compared to bare Pt, and maintaining 90% of its catalytic activity after extended potential cycling. The nitrogen treated Pt-Gr core-shells thus act as an effective substitute catalyst for conventional bare Pt nanoparticles, maintaining their catalytic performance over prolonged use

    Rigorous assessment of Cl−‐based anolytes on electrochemical ammonia synthesis

    Get PDF
    Many challenges in the electrochemical synthesis of ammonia have been recognized with most effort focused on delineating false positives resulting from unidentified sources of nitrogen. However, the influence of oxidizing anolytes on the crossover and oxidization of ammonium during the electrolysis reaction remains unexplored. Here it is reported that the use of analytes containing halide ions (Cl− and Br−) can rapidly convert the ammonium into N2, which further intensifies the crossover of ammonium. Moreover, the extent of migration and oxidation of ammonium is found to be closely associated with external factors, such as applied potentials and the concentration of Cl−. These findings demonstrate the profound impact of oxidizing anolytes on the electrochemical synthesis of ammonia. Based on these results, many prior reported ammonia yield rates are calibrated. This work emphasizes the significance of avoiding selection of anolytes that can oxidize ammonium, which is believed to promote further progress in electrochemical nitrogen fixation

    Injury, Interiority, and Isolation in Men’s Suicidality

    Get PDF
    Men’s high suicide rates have been linked to individual risk factors including history of being abused as a child, single marital status, and financial difficulties. While it has also been suggested that the normative influences of hegemonic masculinities are implicated in men’s suicide, the gendered experiences of male suicidality are poorly understood. In the current photovoice study, 20 men who previously had suicidal thoughts, plans, and/or attempts were interviewed as a means to better understanding the connections between masculinities and their experiences of suicidality. The study findings revealed injury, interiority, and isolation as interconnected themes characterizing men’s suicidality. Injury comprised an array of childhood and/or cumulative traumas that fueled men’s ruminating thoughts inhibiting recovery and limiting hopes for improved life quality. In attempting to blunt these traumas, many men described self-injuring through the overuse of alcohol and other drugs. The interiority theme revealed how suicidal thoughts can fuel hopelessness amid summonsing remedies from within. The challenges to self-manage, especially when experiencing muddled thinking and negative thought were evident, and led some participants to summons exterior resources to counter suicidality. Isolation included separateness from others, and was linked to abandonment issues and not having a job and/or partner. Self-isolating also featured as a protection strategy to avoid troubling others and/or reducing exposure to additional noxious stimuli. The study findings suggest multiple intervention points and strategies, the majority of which are premised on promoting men’s social connectedness. The destigmatizing value of photovoice methods is also discussed

    Terminal osseous dysplasia with pigmentary defects and cardiomyopathy caused by a novel FLNA variant

    Get PDF
    Terminal osseous dysplasia with pigmentary defects (TODPD), also known as digitocutaneous dysplasia, is one of the X‐linked filaminopathies caused by a variety of FLNA‐variants. TODPD is characterized by skeletal defects, skin fibromata and dysmorphic facial features. So far, only a single recurrent variant (c.5217G>A;p.Val1724_Thr1739del) in FLNA has found to be responsible for TODPD. We identified a novel c.5217+5G>C variant in FLNA in a female proband with skeletal defects, skin fibromata, interstitial lung disease, epilepsy, and restrictive cardiomyopathy. This variant causes mis‐splicing of exon 31 predicting the production of a FLNA‐protein with an in‐frame‐deletion of 16 residues identical to the miss‐splicing‐effect of the recurrent TODPD c.5217G>A variant. This mis‐spliced transcript was explicitly detected in heart tissue, but was absent from blood, skin, and lung. X‐inactivation analyses showed extreme skewing with almost complete inactivation of the mutated allele (>90%) in these tissues, except for heart. The mother of the proband, who also has fibromata and skeletal abnormalities, is also carrier of the FLNA‐variant and was diagnosed with noncompaction cardiomyopathy after cardiac screening. No other relevant variants in cardiomyopathy‐related genes were found. Here we describe a novel variant in FLNA (c.5217+5G>C) as the second pathogenic variant responsible for TODPD. Cardiomyopathy has not been described as a phenotypic feature of TODPD before

    Towards Solving QCD - The Transverse Zero Modes in Light-Cone Quantization

    Get PDF
    We formulate QCD in (d+1) dimensions using Dirac's front form with periodic boundary conditions, that is, within Discretized Light-Cone Quantization. The formalism is worked out in detail for SU(2) pure glue theory in (2+1) dimensions which is approximated by restriction to the lowest {\it transverse} momentum gluons. The dimensionally-reduced theory turns out to be SU(2) gauge theory coupled to adjoint scalar matter in (1+1) dimensions. The scalar field is the remnant of the transverse gluon. This field has modes of both non-zero and zero {\it longitudinal} momentum. We categorize the types of zero modes that occur into three classes, dynamical, topological, and constrained, each well known in separate contexts. The equation for the constrained mode is explicitly worked out. The Gauss law is rather simply resolved to extract physical, namely color singlet states. The topological gauge mode is treated according to two alternative scenarios related to the In the one, a spectrum is found consistent with pure SU(2) gluons in (1+1) dimensions. In the other, the gauge mode excitations are estimated and their role in the spectrum with genuine Fock excitations is explored. A color singlet state is given which satisfies Gauss' law. Its invariant mass is estimated and discussed in the physical limit.Comment: LaTex document, 26 pages, one figure (obtainable by contacting authors). To appear in Physical. Review

    R : Lithium-mediated electrochemical dinitrogen reduction reaction

    Get PDF
    The Haber–Bosch process is the dominant approach for NH3 production today, but the process has to be maintained at energy-intensive high temperatures and pressures. Li-mediated electrocatalytic dinitrogen reduction reaction (eN2RR) could instead enable sustainable and green NH3 production at ambient conditions. Lithium mediators realize the synthesis of NH3via the formation of Li3N, and thus lower the energy required for the direct cleavage of N2. There has now been a surge of interest in devising approaches to optimize the NH3 yield rate and faradaic efficiency of the eN2RR process by employing different catalysts as well as electrolytes. This review discusses the recent advances in the field of the Li-mediated eN2RR along with the latest insights into the proposed catalytic mechanisms. Moreover, it also highlights the state-of-the-art reported electrocatalysts and electrolytes that have revolutionized the field of the Li-mediated eN2RR. In addition to the above, our review provides a critical overview of certain limitations and a future prospectus that will provide a way forward to explore this area. Keywords: Nitrogen reduction reaction; Ammonia; Electrocatalysis; Lithium; Reaction mechanism
    • 

    corecore