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a b s t r a c t

As research efforts into the two-dimensional (2D) materials continue to mature, finding applications in
which they can be productively used has become of greater interest. Applications in the energy sector are
of particular importance, with the pressing need to decarbonize our economy and to live more sus-
tainably. For a material to be optimal for an application we typically tailor their specific properties and
characteristics to best fit with the desired parameters. In the past, this has included the forging of metal
alloys or the doping of semiconductors, allowing us to controllably adjust the material properties. For
two-dimensional materials, one of the best routes for such controlled manipulation is via forming a
heterostructure, or hybrid, with another nanomaterial. In this review, we will explore the emergence of
0D-2D hybrid materials, where a 2D layered material is combined with a zero-dimensional (0D) nano-
particle or fullerene to adjust and enhance overall performance. We will cover the basics of their
structure and modes of interaction, the different synthetic methods used for their assembly and prep-
aration and review several energy applications in which promising results have already been achieved.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the discovery of graphene in 2004, the two-dimensional
(2D) materials family has added many further members, ranging
from layered metal dichalcogenides to ‛MXenes’, with a wide range
of chemical, physical, and electronic properties [1]. As the field
continues to grow and mature, a new frontier has opened in the
integration of complementary 2D and non-2D materials [2e6].
Such combinations yield a much broader class of nano-
heterostructures whose combinations can be adjusted for desired
properties, and thus provide great opportunities for the design of
hybrid materials tailored for specific applications.

The class of zero-dimensional materials (0D) primarily consist of
fullerenes, organic molecules, quantum dots, and atomic clusters.
Mixed dimensionality 0D-2D hybrids have been successfully
demonstrated in a number of devices, and often show superior
p (S. Sinha), alex.robertson@
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performance, stability, or chemistry. However, assembly of a mixed
dimensional heterostructure requires precise control on the atomic
level due to the difference in the crystal structure and thermal
stabilities, and the necessity of forming a high-quality interface.
Therefore, 0D-2D materials present unique challenges in the re-
gard, along with opportunities in identifying novel methods for
synthesis. In the past few years, such heterostructures have been
synthesized by utilizing a few different methodologies, for
instance, wet-chemistry, thermal deposition, chemical reaction
pathways, and others, where the more stable 2D material is first
synthesized, and then the 0D material is introduced. In addition to
the general experimental parameters such as temperature, atmo-
sphere, pressure, etc., the techniques used for interfacing 0D ma-
terials with other 2D systems also vary depending on the 0D
material used as well as their desired concentration and required
uniformity on the 2D host.

The present review highlights the different methods to produce
these 0D-2D heterostructures and discusses their advantages as
well as shortcomings. While we focus on the general synthetic
approaches and the optimal experimental parameters used in
different techniques, we also provide a general sense of which type
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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of synthetic methodology is best suited for a specific 0D material.
We have also dedicated sections on synthetic processes that do not
require either complex mechanisms or high-cost materials. A
further section has been added on green synthesis to recognize the
efforts put in this direction to create high quality 0D/2D samples
whilst using fewer resources. The latter half of this review explores
the emerging energy applications of these 0D-2D heterostructures,
in catalysis, energy storage, and solar cells, illustrating the chal-
lenges and opportunities these hybrids provide.

2. Types of morphologies and interactions between 0D
particles and 2D materials

Realizing the potential of a 0D-2D composite requires engi-
neering a system that promotes the respective advantages of each
component. Ideally, it achieves a synergy or co-activity that is
greater than the sum of its parts [7,8]. The morphology andmode of
interaction of the composite will often be contingent on the syn-
thesis process employed, which will be addressed in the subse-
quent section. There are four main schemes by which we can
integrate 0D and 2D materials into a composite (Fig. 1aed): Deco-
rating the basal surface of the 2D material with the 0D component
(Fig. 1a). Situating the 0D component along the 2D material edges
(Fig.1b). Encapsulation of the nanoparticle by a 2Dmaterial (Fig.1c)
[9,10]. And, in the case of the 0D component being single atoms,
integrating the dopants into the 2D material (Fig. 1d).

In the case of a composite where the particle is situated on the
basal plane (as per Fig. 1a), ensuring the nanoparticle or fullerene is
Fig. 1. The different morphologies and potential interaction mechanisms for 0D-2D hyb
decorating a reduced graphene oxide (r-GO) nanosheet [13]. (b) Nanoparticles preferential
nanoparticles along their edges [14]. (c) Nanoparticles encapsulated in 2D sheets. A TEM ima
Single atom sites within, on top of, or along the edge of the nanosheet. High-angle annular da
substitutions in MoS2 [16]. (e) A van der Waals interaction, such as between graphene and a
hydroxyl functional on GO and a citrate ligand on a nanoparticle. (g) An aromatic/p-p inter
covalent bond, typically formed between a functional group on GO and a ligand.
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well anchored to the 2D material host is essential; whether it is to
facilitate catalytic activity, inhibit nanoparticle ripening, or simply
to minimize the detachment of the 0D component while under
application conditions. Understanding the interaction mechanisms
available between the 0D and 2D components allows us to suitably
design our materials, such as by appropriately capping the nano-
particle or by treating the 2D material host beforehand. Facilitating
the adhesion of the 0D component can be achieved by engineering
appropriate functional groups for it and/or the 2D material
(Fig. 1eeh), leveraging one of four different modes of interaction:
The van der Waals force (Fig. 1e). Electrostatic attractions, dipole-
dipole, and hydrogen bonding (Fig. 1f). A p interaction with aro-
matic components (Fig. 1g). Or a covalent bond (Fig. 1h) [11,12]. We
will explore the details of these in the following paragraphs.

The van der Waals interaction is often the target from ex-situ
preparation pathways, i.e. where the nanoparticle and 2D mate-
rial components are prepared separately, and then treated to form a
composite [17]. The composite can then be prompted to self-
assemble via solvent evaporation [18]. It is a weak interaction,
and so not ideal for maintaining nanoparticle adhesion to the 2D
host, which is a disadvantage for many applications that require the
composite to be used in hostile conditions, such as an electro-
catalyst in a proton electrolyte membrane fuel cell (PEMFC) or high
temperature reaction processes [19,20]. However, a major advan-
tage is that it does not require the host 2D material to present
functional anchor groups to which nanoparticles can interact with,
and so allows for pristine material to be used [21,22]. Such func-
tional groups can limit the performance of a 2D material, reducing
rids. (a) Nanoparticles arranged on the basal plane. A TEM image of CoS2 nanoparticles
ly situated along the nanosheet edge. A TEM image of triangular MoS2 flakes with Au
ge of a Pt nanoparticle encapsulated in several graphene layers. Scale bar 2 nm [15]. (d)
rk-field (HAADF) scanning-mode transmission electron microscopy (STEM) image of Pt
ligand-free nanoparticle. (f) Electrostatic dipole-dipole interaction, such as between a
action, such as between graphene and a phenylethanethiol capped nanoparticle. (h) A
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its electrical conductivity or durability, thus anchoring via van der
Waals can be preferable for high performance electronics [23,24].
Aiming for a van der Waals interaction also allows for using a
ligand-free nanoparticle component, which can be desirable for
reducing cost [25,26] or ensuring optimal performance by keeping
active sites free [27,28].

An electrostatic or covalent interaction between a 2D and
partner 0D material can be obtained by appropriate functionaliza-
tion of the 2D material [29,30], and coordinating the functional
group anchor sites with corresponding capping ligands on the
nanoparticle. These can yield a dipole-dipole interaction between
the groups or can react and form a covalent bond. A common
strategy is to self-assemble the nanoparticles on the 2D support,
often relying on the polar oxygen and hydroxyl functional groups
present on graphene oxide (GO) [31e34]. Such composites have the
advantage of being straightforward to assemble with one or two
steps, as the nanoparticle growth and adhesion can be done in-situ
[35,36], and have a stronger interaction strength than with just
relying on van der Waals, giving even dispersion and protection
against ripening and/or detachment of the nanoparticle from the
2D host while under application conditions. Covalent bonding can
be obtained by using appropriate functional groups [13,37], leading
to an even stronger anchoring of the 0D component to the 2D host.
In the case of 2D metal dichalcogenides, nanoparticles can cova-
lently bond to defect sites on the basal plane [38e40], such as
chalcogenide vacancies, or the defects can act as nucleation sites for
subsequent nanoparticle growth [41,42]. Similarly, exploiting the
dangling bonds along sheet edges is a way of preferentially deco-
rating edges of monolayer transition metal dichalcogenides with
nanoparticles [14,39,43].

However, functional groups or defects can impair the material
performance. A major advantage of exploiting the p orbital
attraction is that it allows us to keep a graphene 2D host pristine,
with no functional groups degrading the sp2 bonding network [44].
The p attraction occurs at electron-rich p orbitals of aromatic rings
[45,46], generating an electrostatic force, although the details are
somewhat more nuanced (see Ref. [47]). With a graphene host and
an appropriately selected aromatic capping ligand for the nano-
particle, a p-stacking arrangement can be instigated between the
0D and 2D components [48]. The high electron density of the
graphene p-orbitals can also be exploited via h6 hapticity between
the graphene ring and a transition metal-containing functional
group [49]. This haptic approach preserves the high conductivity of
graphene while still yielding well dispersed nanoparticles adhered
to the graphene surface [50,51]. Beside attaching nanoparticles,
fullerenes can also be adhered to a graphene host via p attraction,
either by functionalization of the fullerene [52], or by simply
mixing bare fullerenes together with graphene [53], where a
combination of the p interaction and adhesion to amorphous car-
bon residue on the graphene maintains the fullerene-graphene
composite [54].

The above 0D-2D composites have been discussed in the context
of the 0D component decorating a 2D material. The inverse
morphology, where the nanoparticle is wrapped in a 2Dmaterial, is
also possible (Fig.1c). The 2Dmaterial can act as a shield, enhancing
the durability of nanoparticles while operating under severe con-
ditions by militating against ripening, deactivation, or dissolution
[15,55e57]. The 2D enclosing layers can have a stronger interaction
with the host material system, such as a p - p interaction between a
graphitic electrode and a graphene-shielded nanoparticle [58],
helping to prevent nanoparticle detachment. With these mor-
phologies, it is important to ensure that any activity of the 0D
component is not passivated by the enwrapping 2D layer.

The ultimate 0D component is the single atom, and is of interest
for controlling the electronic structure via doping, or for the
3

emerging field of single-atom catalysts [60e62]. Fig. 2a outlines
how single atoms can be bound in to a 2D host, with a metal
dichalcogenide (e.g. molybdenum disulfide [MoS2]) used as the
example. The experimental prevalence of configurations shown
will vary significantly, depending on the 2D host and the dopant
atom. For transition metals doped to transition metal dichalcoge-
nides (TMDCs), the typical preference is for situating at sub-
stitutions, top sites above the metal, or hollow sites [63].
Experimental examples illustrating this are captured in the high-
angle annular dark-field scanning-mode transmission electron
microscopy (HAADF-STEM) images shown in Fig. 2b, showing a
cobalt [Co] substitution for a single sulfur [S] (top image, bright
atomic site in the center of the image), and a Co atom interstitial
located in the hollow site of the ring center (bottom image) [59].
The bridge site, where the dopant atom is situated above the bond
between two of the sites in the 2D material, is generally unstable
for 2D dichalcogenides [64,65], but is more viable for the case of
graphene [66]. Several reviews have covered atomic doping of 2D
materials recently [67e69], and so this review will discuss atomic
doping of 2D materials in the context of providing a tailored 2D
component for a composite, such as nitrogen doped graphene,
along with larger 0D components, such as nanoparticles and
fullerenes.

3. Synthesis methods

Several detailed studies have been carried out on understanding
hybrid 0D-2D nanomaterials [70] often relying on sophisticated
characterization methods like scanning tunneling microscopy
(STM) and transmission electron microscopy (TEM) [71e74].
However, the preparation techniques employed for fabricating
samples differ tremendously depending on the characterization
tools used for that particular study. In addition, the sample prep-
aration varies widely across the types of nanomaterials used to
create the hybrid structure. For instance, some of the most
commonly preferred techniques for fabricating a fullerene-2D
hybrid material are the chemical addition reaction [75,76], ther-
mal evaporation [77], and drop-casting (Fig. 3) [54]. In this section,
wewill focus on the different sample techniques used to prepare 0-
D materials for 0D-2D hybrids. A special focus on sample prepa-
ration for high-resolution transmission electron microscopy
(HRTEM) studies has been given in the section to reflect on the
sophisticated sample synthesis required to carry out such studies.
The section has been divided based on the type of methodology
employed and subsequently divided into subsections based on the
nanomaterials used. Table 1 at the end of this section summarizes a
variety of techniques available for preparing the family of fullerene-
2D heterostructures, and also contains separate columns to
emphasize the TEM imaging conditions and sample annealing
methods required to achieve high resolution imaging.

3.1. Thermal evaporation

One of the more popular methods for deposition of 0-D
frameworks on 2D materials is thermal evaporation. Prior to ther-
mal evaporation, annealing of the substrate containing the 2D
materials beforehand is required, to minimize possible surface
adsorbates. During the thermal deposition process the chamber is
pumped to a high vacuum and the 2D material (the substrate) is
kept heated at high temperature, usually in the range of
100e200 �C, during the deposition process. However, the ideal
substrate temperature can vary significantly and should be deter-
mined by considering the type of 2D material and the type of 0D
material being thermally evaporated so that it facilitates the
deposition process. For instance, Kim et al. [82] studied the effect of



Fig. 2. Single atom catalyst sites on a monolayer transition metal dichalcogenide. (a) Slightly off-axis top-down atomic models, showing metal (cyan) and pairs of chalcogenide
(yellow) atoms. An added single-atom (blue) can typically occupy one of the shown six sites. (b) HAADF-STEM images of a single Co atom occupying the S substitution and the
hollow site in monolayer MoS2 [59].
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substrate temperature and uniformity and thickness of the
deposited 0D material. C60 was thermally deposited on graphene
substrate whose temperature was varied in the range of 20e120 �C.
Fig. 3. Schematic representation of different methodologies for introducing different
metallofullerenes (MFs) on suspended graphene [54]. (d) The chemical reduction process for
metal particles and graphene oxide [78]. (e) Grafting of C60 onto graphene through a che
transfer and surface deposition (STSD) method by first solvent transferring MoS2 fromwater
transfer and SD refers to surface deposition in the figure. (geh) Electrochemical method o
(AuCl�4 ) solution in (h), that leads to spontaneous galvanic reaction on the surface through c
technique to introduce uniform fullerene crystals to graphene [82].

4

The authors showed that a substrate temperature of 120 �C resulted
in 10 nm thickness of highly uniform morphology of C60 on gra-
phene. The same group carried out another investigation on
nanomaterials to graphene. (aec) Drop-casting technique to introduce endohedral
formation of nanoparticles onto graphene via an intermediate nanocomposite made of
mical addition reaction [79]. (f) Preparation of C60eMoS2 nanocomposite via solvent
to isopropanol (IPA) and then surface depositing the fullerenes [80]. ST refers to solvent
f formation of nanoparticle decorated graphene by introducing chloroauric acid anion
harge communication between the solution and graphene [81]. (i) Thermal deposition



Table 1
Summary of preparation methods of fullerene-2D hybrid materials and their characterization by TEM imaging.

0D/2D hybrid 2D material annealing Preparation method Annealing of hybrid structure TEM imaging conditionsa Ref

Gr-C60 30 min, 400 �C, in air Thermal evaporation
(10�5 mbar; 1 Å/s; Graphene 100 �C)

N/A STEM, 60 kV, 60e200 mrad [77]

Gr-C70 200 �C, 30 min, in air Thermal evaporation
(0.05 Å/s , 2 � 10�6 Torr, Graphene 110 �C)

N/A TEM, 80 kV, electron dose ~
2 � 104 e nm�2/s.

[119]

Gr-C60 Air annealing,
200 �C, 30 min

Thermal evaporation
(3 � 10e6 Torr; 0.2 Å/s; Graphene 120 �C)

N/A TEM, 80 kV [82]

hBN-C60 200 �C, 30 min, Air Thermal evaporation
0.2 Å/s , h-BN 110 �C

N/A TEM, 80 kV [120]

FNG-Fullero-benzyne Vacuum annealing Chemical Addition Vacuum annealing, 48 h TEM, 200 kV [75]
C3N4eC60 Drying Chemical Addition 80 �C vacuum 12 h TEM, 200 kV [86]
Gr-C60 Reducing Graphene Chemical Addition Vacuum 60 �C, overnight TEM, 200 kV [79]
GrO-C60 Chemical modification Chemical Addition then

drop-casting on TEM grid
Left in air to dry TEM, 200 kV [87]

Gd3N@C80-Gr Ar/H2; annealing Drop-casting 60 �C, vacuum annealing STEM, 60 kV, 72e271 mrad [54]
MoS2eC60 N/A Catalyzed Transport Method,

2 wt.-% C60 in MoS2 powder
@ 10�3 Pa, 1,030 K, 22 days

Thoroughly washed
with toluene

TEM, 300 kV [89]

MoS2eC60 N/A Ultrasonication (C60 2.9e5.6 wt%
in Toluene with MoS2 IPA solution)

N/A TEM, 200 kV [80]

MoS2eC60 N/A Ball milling then mechanically
exfoliated

60 �C, vacuum TEM, 200 kV [118]

Gr-C60 hybrid N/A Ball milling process TEM, 200 kV [121]

a Imaging conditions for TEM, including accelerating voltage, imaging mode (TEM vs. STEM), dose, and collection angle (for STEM, mrad).
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thermally depositing pentacene molecules on graphene and found
that the ideal substrate temperature was 60 �C.

Recently, Nguyen et al. [83] reported that the epitaxial growth
of vacuum deposition of fullerenes on graphene can occur by the
charge transfer occurring between the two materials. The authors
were successful in carrying out layer-by-layer growth of highly
ordered C60 in A-B-A stacking on top of graphene by in-situ elec-
trical gating to finely tune the Fermi level (EF) of graphene during
the deposition process. The number of transferred electrons to
graphene during the electrical gating not only determined the
crystal structure and morphology of the C60 crystals, but also how
they assembled into thin films on top of graphene. Controlling
such growth dynamics of these organic frameworks is essential, as
they are the key to the optoelectronic behavior of the resultant
hybrid material. Studying such charge-transfer-induced interac-
tion could help the development of a reliable procedure to opti-
mize the deposition and growth procedure for obtaining organic-
2D templates.

Organic molecular beam deposition (OMBD) is a variant of this
process where organic films can be grown from a resistively heated
Knudsen cell onto a substrate. Felix et al. [84] reported that
epitaxial growth of perfluoropentacene on graphene substrate by
the OMBD method, were found to be form well-ordered islands
aligned to the zigzag direction of the substrate.

Pulsed laser deposition (PLD) of the 0D component can syn-
thesize clusters of metal atoms on the surface of a 2D material. In
this particular method, a high-power focused pulsed laser beam is
used to target the material that is to be deposited on the 2D ma-
terial. Dong et al. [85] realized deposited Pt clusters through a PLD
chamber with an argon (Ar) pressure of 50 mTorr. These clusters
were of nanoscale dimensions, allowing for e-beam irradiation
from a TEM to instigate interesting dynamics of the nanoclusters on
the suspended graphene. 2D materials are known to contain de-
fects, which can effectively form trapping centers for metal atoms.
Therefore, although PLD can be damaging to the 2D material sup-
port, the defects introduced in the sheet can act as effective
anchoring sites for atom clusters. Thus, this variant of deposition
method is an interesting pathway for potentially forming metal
cluster composites embedded in a 2D material.

One of the advantages of thermal deposition is that the vac-
uum conditions required to carry out the process anneals the
5

heterostructures and provides a clean interface to the hetero-
structure. The added benefit is that the sample can then directly be
loaded into the microscope to carry out the study without the in-
termediate substrate annealing process as the synthesis process
itself is carried out at high temperature under inert conditions.
However, it should be noted that there are several variants of the
thermal deposition method that are used for a particular type of
nanomaterial, i.e. for organic frameworks, metal clusters, etc., and
equally important is the vacuum, heating conditions and cooling
duration used during such synthesis.

3.2. Chemical addition

The chemical modification and functionalization of 2Dmaterials
is another route to introduce 0D materials on to its surface. For
instance, introduction of organolithium to the graphene surface can
activate it for direct nucleophilic addition of C60 to the surface
causing hybridization of these nanostructures [79]. The absence of
surfactants involved in the chemical process yields clean interfaces
of such hybrids, which is advantageous for device applications.
Such modification of the surface of 2D materials for addition of 0D
materials has been shown for various other organic systems such as
graphene/fullerobenzyne [75], C3N4eC60 [86], and GrO-C60 [87]
(GrO¼ graphene oxide) [88]. One aspect of such chemical additions
can be the difficulty in precise determination of the chemical
bonding between 0-D and 2-D material, especially if the 0-D ma-
terial is a big molecule rather than a single atom. In addition, 2D
nanomaterials are intrinsically anisotropic, and therefore the pre-
cise location of the chemical addition of such 0D materials strongly
depends on the experimental conditions. For instance, hybridiza-
tion across the edges occurs more easily than on the 2D basal
surface. Transition metal dichalcogenide (TMDC) materials are
generally easier to conduct addition experiments to, as compared
to graphene, due to the sulfur bonds that can form from on the
surface. The atomic resolution of aberration corrected TEMmeans it
is now possible to determine the precise location and dynamics of
these chemical bonding sites. It can detect the commensuration of
lattices, their orientation and dynamics on an atomic scale [89].
Whilst making these hybrid samples via this method, it is impor-
tant to note that the excess solvent residues should be removed to
avoid contamination during imaging, which can be achieved by
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heating the sample under vacuum to drive the excess from the
surface.

Chemical modification of the surface of 2D materials can also be
exploited to decorate its surface with metal nanoparticles. For
instance, carrying out reduction of ethylene glycol on the surface a
2D material host for introducing Pt [36], exposing graphene to
aqueous chloroplatinic acid [90] or chloroplatinic acid dissolved in
ethanol [91] to synthesize Pt-laden sheets, etc. A commercially
viable alternative to this method is plasma jet treatment, where
highly dispersed Pt nanoparticles were dispersed on the 2D surface.
This affixed the particles to not only one side but both, in just a
single one-step process [92]. Another chemical approach exploits
the reduction properties of Pt and Pd nanoparticles (NPs) on GO.
These NP/GO hybrids are reduced by the use of supercritical 2-
propanol to result in Pt and Pd NPs on graphene [78]. In a similar
experiment, Pt, Ru and Ni NPs were also able to be deposited on the
surface of graphene oxide by using the exfoliating ability of su-
percritical CO2 [93]. Graphene oxide has also shown the potential to
be used as a solid reductive agent for the fabrication of reduced GO
(r-GO)/metal (e.g., Cu, Ni, Co) nanoparticle hybrid composites. A
simple thermal reduction method at 500 �C under flowing argon
without any external reductive agents (such as CO, H2, sodium
borohydride [NaBH4]) was shown to form highly dispersed NPs of
these metals on the surface [94]. The development of these new
synthetic methods is crucial for both environmental and economic
reasons, as these chemicals are readily available in sufficient
quantities for industrial applications. Interestingly, not only 0D on
2D, but 2D on 0D materials also have been successfully fabricated.
Peng et al. has showed the formation and growth of graphene on
top of Pt nanoparticles [95]. Pt nanoparticles were first synthesized
on cubic magnesium oxide, and then used for the deposition of
graphene. These growth studies of graphene on MgO-supported Pt
nanoparticles were conducted via both in situ and ex situ high-
resolution TEM. TEM allowed for the study of the actual growth
process, and the authors concluded that graphene sheets grow
from steps on the Pt nanoparticle surface. This approach opens up a
new way to synthesize nanocomposites based on graphene and
noble metals nanoparticles at low cost. Some of the metal-2D
material composites synthesized through these chemical process
include ferric (III) oxide [Fe3O3]-Gr [96,97], cerium (IV) oxide
[CeO2]-reduced Gr [98,99], iron phosphide [FeP]/carbon nitride
[C3N4] [100], Fe nanoparticles [NPs]/Gr [101], palladium [Pd] NPs
[102], platinum [Pt]/graphene oxide [GO] [103], Pt/Gr [104], and Pt/
Gr [105] (Gr ¼ graphene).

Despite the facile nature of preparation of these NP/graphene
hybrids, some of these processes are harsh for the 2D system,
particularly the ones that require the use of strong acids and can
lead to rupture in the 2D material or chemical modification.
Therefore, baseline studies should be carried out to make sure that
the properties have not changed of the 2D material after using the
chemicals. Another consideration for the chemical additionmethod
is the proper removal of solvents or catalysts after carrying out the
reaction. Therefore, heat treatment of the heterostructure is
necessary after the synthesis procedure to remove the solvent
molecules and adsorbed species from the surface.

3.3. Drop-casting

Drop-casting provides a facile straightforward way to introduce
0D structures to the 2D surface via solution. A solvent containing
the desired material can simply be introduced to the surface of the
2Dmaterial by either a simple ‘drop’ or by spin-coating on top. Both
these routes have their advantages, where the former ensures that
therewill be enoughmaterial introduced to the 2D surface whereas
the latter is more capable of an even spread across the 2D region. It
6

should be noted that spin-coating often leads to significant wastage
of the raw material, and simply ‘dropping’ the solvent on the sur-
face can sometimes lead to a ‘coffee ring’ effect, whereby the ma-
terial concentrates into concentric rings on the substrate when the
solvent is drying. Therefore, it is important to consider the surface
tension and microflow of the solvent, and a thoughtful consider-
ation of the 2D material in question, for the best dispersion.

The migration barrier of most NPs on the 2D material surface,
such as graphene, has been reported to be low [106], and therefore
the 0D structures should be mobile after drop-casting them onto
the surface. However, the presence of dangling bonds at the edges
and the reported amorphous carbon layer formation on the surface
of the 2D materials can often lead to the binding of the 0D struc-
tures to its surface. For instance, our work on Gd3N@C80 on gra-
phene showed that after the drop-casting process, Gd3N@C80
entities on pristine graphene surface showed both translational and
rotational dynamics, but the ones near the edges or in contact with
the amorphous carbon layer on top were anchored [54]. One of the
important factors to consider whilst using this technique is the
correct choice of solvents and the use of right density of the solu-
tion for drop-casting. Using high boiling point solvents for drop-
casting can make it difficult to remove the solvents afterward,
whereas high density solution can lead to coalescence of NPs on the
surface instead of them being separated. For the aforementioned
reasons, drop-casting is an easy way to introduce metal NPs to the
surface of 2D materials [107], as they are easily available in high
purity ionic solutions. Ionic liquids (ILs) have been shown to have
the ability to evenly disperse CNTs, thus providing the scope to
potentially disperse arrays of tubular structures on 2D materials. It
has also been shown that on top of dispersing the NPs on the sur-
face, these ILs also provide stability to the NPs during the synthesis
process by forming a protective layer around it [108]. The use of ILs
is an area less explored for such synthetic processes and should be
explored further.

Although the drop-casting technique has a downside in that it
does not provide spatial control over the formation of the hybrid, it
does provide a facile route to fabricate a desired 0D/2D hybrid for
studying its fundamental behavior and dynamics at the atomic
scale using TEM.

3.4. Ultrasonication

Of the many methodologies being reported so far, ultra-
sonication best facilitates the lost-cost synthesis of the 0D-2D
hybrid material as the instrument cost is lower than that of other
methods, such as vacuum deposition or electrochemical synthesis.
Coupling quantum dots (QDs) with 2D materials have attracted
great attention recently, as they show remarkable photocatalytic
efficiency [109]. Ultrasonication of QDs with the 2D material pro-
vides a platform for the efficient formation of colloidal-QD/2D-
material nanocomposites [110]. Anchoring of these QDs on the
surface of the 2D material can occur easily via static charge
attraction between the QDs ligand anions and the vacancies in the
2D sheets, for instance S-vacancies in MoS2. The resultant nano-
composites have been reported to consist of uniformly deposited
QDs on the surface and can be easily studied by transferring them
to the TEM grid via the drop-casting method. Ultrasonication is
often combined with other methodologies such as solvent transfer
and surface deposition method (STSD) and chemical addition, to
produce thin films after the addition of 0D materials to the surface
of a 2D material. Ultrasonication helps separate the sheets after-
ward to provide thin films of the 0D/2D hybrid. It is important to
use the right power and duration to carry out ultrasonication, as
high power could lead to the disintegration of 2D materials into
smaller pieces, and less time utilized to carry out the process can
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lead to ineffective separation of the thick layeredmaterials into thin
sheets, thus only having thick material, as it was shown by Sinha
et al. when using PbI2 on graphene substrates [111].

3.5. Electrochemical methods

In this method, the spontaneous galvanic reaction of nano-
particles to a 2D host is exploited to facilitate the formation of
clean 0D/2D hybrids. Park et al. [81] demonstrated that a sponta-
neous galvanic reaction occurs in the sandwich structures of
reductant/graphene/oxidant that leads to deposition of the metal
nanoparticles on the 2D surface. The authors fabricated Au nano-
particles on graphene by placing an Au ion solution on graphene,
as made on Cu foil, to form a Au ions/graphene/Cu foil structure.
The use of a galvanic reaction technique to form noble metal
deposition on 2D materials has the advantage of being contami-
nation free, which is an issue for the more conventional methods
that frequently require organic solvents for nanoparticle forma-
tion. Nanoparticle-graphene hybrid structures, in particular, have
attracted much attention and importance due to both their
fundamental physical properties and especially sensor applica-
tions [112]. The accessibility of such clean and facile procedure for
nanoparticle-graphene hybrid formation would speed up the ef-
forts put towards their applications in electronic, electrochemical
and optical sensors.

Electrostatic interactions between nanoparticles and 2D mate-
rials can provide another route for synthesis of these hetero-
structures, especially for electronegative 2D materials such as
MXenes. Ye et al. [113] designed nanostructured electrocatalysts
with high activity and long-term durability by adding electroposi-
tive CoZneSe nanoparticles to electronegative 2D MXene nano-
sheets. The uniform distribution of these nanoparticles on the
MXenes was ensured by their self-assembly on the 2D sheets when
introduced 2-methylimidazole. Electrostatic interaction is yet
another method to successfully integrate 0D material with a 2D
system. QDs have been shown to uniformly intersperse into the
nanosheets of MoS2 orWS2 based on solely electrostatic interaction
[114]. Centrifugation of these two materials together leads to uni-
form dispersion of QDs on MoS2. Although the QDs used in this
particular work were also derived from the parent 2D material, this
process can be easily replicated to other QDs. Such processes also
demonstrate how two different synthetic methods, such as elec-
trochemical addition-chemical transformation or electrostatic
interaction-centrifuge can lead to beautiful, uniformly distributed
introduction of 0D particles on to a 2D material target.

3.6. Solvent transfer and surface deposition method

The STSD method, as reported by Chen et al. [80], permits
flexible formation of 0D/2D composites. The authors solved the
issue of the large solubility difference between MoS2 and C60 by
utilizing the solvent transfer method to slowly transfer C60 dis-
solved in toluene to MoS2 dispersed in isopropanol, resulting in a
stable and well-dispersed C60 deposition on the MoS2 flakes. The
resultant hybrid was investigated at room temperature and
ambient atmosphere by creating an ITO/C60eMoS2/Al configuration
devices where ITO and Al were used as bottom and top electrodes
respectively. The results showed excellent nonvolatile memory
device behavior of the hybrid configuration with repeatable
‛writeereadeeraseereaderewrite’ cycle with an ON/OFF ratio of up
to 3.8 � 103. The STSD synthetic method can be sharply contrasted
with the catalyzed transport reaction methodology, where similar
C60 molecules acted as a growth promoter for MoS2 and thus also
consequently incorporated in the MoS2 crystal to form a nano-
composite. But the reaction itself was carried out for weeks, in high
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vacuum and at high temperature (>1,000 �C) [89]. These aggressive
reaction conditions are not ideal for experimental analysis and for
developing applications, which highlights the benefits of the
milder STSD method for preparing the same nanocomposite but
under more environmentally friendly and gentle conditions. Simi-
larly, other organic compounds such as phenyl-C61-butyric acid
methyl ester (PCBM) have also been reported to have deposit on
MoS2 to form nanocomposites via the STSD method, by mixing the
two in n-methyl-2-pyrrolidone (NMP) and isopropanol (IPA),
respectively [115].

Another variant of this method is via in-situ precipitation,
where a-AgSiO particles were formed on the g-C3N4 surface,
similar to the STSD method [116]. As verified by TEM imaging, the
STSD method yielded uniform deposition of the organic material
on top of the 2D surface to form nanocomposites. The important
consideration is to find the right combination of solvents that are
miscible and can dissolve and disperse the respective organic
material and the 2D material, respectively. Ultrasonication is often
employed for carrying out the actual mixing of the solutions for
making nanocomposites.

3.7. Green synthesis

As has been discussed in this section, different types of synthesis
methods can be employed depending on the type of hybrid mate-
rial to be synthesized. An important aspect of research in this area is
to find new methodologies that consume fewer resources whilst
providing optimum growth conditions for creating high quality
materials. One such green methodology has been reported recently
for the synthesis of 0D-2D hybrid materials by Xavier et al. [117] In
this process, the authors reported the use of glucose and urea,
which are inexpensively available and nonhazardous precursors,
for the synthesis of carbon QDs and carbon nitride sheets. The
hybrid was assembled through microwave irradiation, which
resulted in successful integration and uniform distribution of car-
bon quantum dots on the surface of the carbon nitride sheets. The
resultant hybrid showed a fourfold enhancement in photocatalytic
activity at the 0D-2D heterojunction, compared to the pristine
carbon nitride sheets. More research in this area is required to
create hybridmaterials that would optimize resources by efficiently
using new eco-friendly methodologies.

Ball-milling is another route to fabricate 0D/2D van der Waals
heterostructures and nanocomposites [118]. A significant advan-
tage of this mechanochemical route is it is eco-friendly and can be
carried out without requiring high vacuum or inert conditions.
MoS2 and C60 heterostructures were reported to be synthesized via
this route, with the MoS2 later mechanically exfoliated to form thin
sheets [118]. Studies via TEM showed that C60 was successfully
bound to the edges of MoS2, and that it was the presence of C60 that
led to a decrease in the thickness of the MoS2 nanosheets after
mechanical exfoliation. In addition, C60 adhesion to the surface of
MoS2 also showed excellent visible light photocatalytic H2 pro-
duction rate, showing the success of this technique. The downside
of the ball-milling method is the lack of control over the quantity
and spatial distribution of these 0D materials on the 2D surface.
Likewise, it is also difficult to control the domain shape and size of
the 2Dmaterials, whichmakes the process difficult to translate into
applications.

We recognize that green synthesis has only recently been picked
up by researchers in 0D-2D heterostructure preparation, and much
work needs to be done in this area. We hope to have provided the
readers with some ideas and what first steps are being taken in this
direction, but future prospects must be addressed in the context of
optimizing efficient heterostructure synthesis while maintaining
high yield and low cost.
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4. Solar cells

There has been a significant interest in the use of 0D/2D system
in perovskite and organic solar cell systems over the past decade.
Recognizing the sizeable amount of literature investigating
fullerene/2D materials, we have divided this section into two sub-
sections; the first one focuses on fullerene derivates and hybrids
with other 2D materials, and the second section covers the role of
other 0D/2D material hybrids in photovoltaics.

4.1. Fullerene/2D material hybrid

An impressive amount of research has been carried out on ful-
lerenes and their derivatives, especially for application in the field
of perovskite and organic solar cells [122,123]. Their unique struc-
ture, electron acceptor and transfer properties, as well as the ability
to encapsulate or functionalize with a variety of different mole-
cules, has rendered them indispensable for the development of
next generation solar cells. For instance, the fullerene derivate
PCBM is widely recognized for its role in suppression of hysteresis
in perovskite solar cells and as an electron extraction and transport
material for organic photovoltaics [124,125]. In addition, the advent
of thin-film solar cells has inspired the study of 2D materials like
graphene and TMDCs in photovoltaics because of their enhanced
charge transport and slower exciton recombination [126e129]. It
has been shown that 2D materials not only lower the cost of
fabrication, but also enhance the efficiency as well as minimize
energy barriers for charge extraction [130]. They have been used as
electrode material [131], both hole and electron transport layer, as
well as in the perovskite layer (Fig. 4a). In this section, we will re-
view the novel properties and applications of the hybridization of
these two 0D-2D materials for photovoltaics and the novel prop-
erties they bring.

The investigation of fullerene-graphene hybrids can exploit the
high carrier mobility of graphene and the strong electron accepting
Fig. 4. (a) Schematics of a typical perovskite solar cell showing the different layers of the con
and HTM refer to electron transport layer and hole transport layer respectively [139]. (b) Dev
of graphene and the substrate via an APTES layer [137,138]. (c) Schematic diagram, (d) SEM
performance of Gr-Si solar cells [140].
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properties of fullerene derivatives [132]. It was demonstrated for
the first time by Kakavelakis et al. [133] that although the utiliza-
tion of PCBM functionalized r-GO initially increases the conduc-
tivity of the film by five times, leading to a higher short circuit
current density, it simultaneously also reduces surface traps as well
as passivates the perovskite surface. The r-GO acts like a third layer
in the charge transfer of electrons from the perovskite to the PCBM
layer. The authors also showed that the hybrid led to reduced series
resistance and surface roughness for electron transport, which has
not been achieved by a PCBM-only or 2D material-only interface.
Subsequently, Bi et al. [134] demonstrated that a doped graphene-
PCBM hybrid is almost three times as effective in blocking the ions
and molecules, compared to a conventional electron extraction
layer of the same thickness. The resultant device also maintained
98% efficiency in the prolonged 500 h 85 �C aging test.

Increase in performance of organic solar cells have also been
reported recently, by exploiting the hybrid PCBM-graphene system.
The ability to easily drop-cast, spin coat or vacuum deposit this
fullerene derivate on top of the 2D material facilitates the facile use
of this hybrid in fabricating solar cells [135]. It has also been re-
ported that fullerene derivate PCBM can also be hybridized with
graphene in the form of quantum dots [136e138]. Graphene
quantum dots (GQDs) are just graphene sheets, with single or a few
layer thickness, but smaller than 10 nm in diameter. These GQDs
benefit from the fact that they still exhibit all the excellent elec-
tronic and mechanical properties of graphene, whilst also encom-
passing the distinct properties of quantum dots, such as
photoluminescence, quantum confinement, etc. This portfolio of
properties offered by GQDs, when combined with PCBM, has the
potential to increase the performance and stability of the perov-
skite solar cells. Shin et al. showed that this is not only true for
classic rigid substrates, but an excellent approach for also creating
perovskite solar cells on flexible substrates. The resultant hybrid
helps improve light absorption performance [136], as well as realize
highly flexible perovskite solar cells which can maintain over 80%
figuration where 0D/2D hybrid can be applied based on their type and properties. ETM
ice structure of a solar cell utilizing graphene quantum dots. Inset shows the interaction
image, (e) and the three different mechanisms by which the Pt NPs can enhance the



Fig. 5. Graphitic C3N4 as a cocatalyst in photocatalysis. (a) Atomic model of a sheet of
g-C3N4. (b) Simple band structure sketch of a heterojunction between g-C3N4 and a
semiconductor quantum dot, illustrating charge separation with electron accumulation
to the right conduction band (CB) and hole accumulation to the left valence band (VB).
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shape of the original cell even after 3,000 bending cycles at a cur-
vature radius of 4 mm (Fig. 4b) [137,138].

4.2. Other 0D/2D material hybrids

0D NPs functionalized on 2D materials can alter the design, ef-
ficiency and nature of photovoltaic devices. As discussed in the
previous section, NPs can be easily introduced as dopants or
functionalized on the surface of a 2D material via different tech-
niques. One of the first demonstrations of a metal nanoparticle-
graphene hybrid was by Wang et al., in 2014 [141]. They demon-
strated improved photovoltaic performance by the use of the
nanocomposite, as compared to TiO2-only devices. Since then,
many studies have been carried out on synthesizing and applying
NP/graphene hybrids in photovoltaic devices, and have shown that
the deposition of NPs on graphene can lead to higher efficiency of
photovoltaic devices, as they can alter the work function of gra-
phene [142,143] and reduce energy barrier formation at interfaces,
owing to the p- or n-type doping (Fig. 4cee).

Bhosale et al. [144] showed that MoOx doped GO films do not
cause trapping or delocalization of holes in the GO film, and
reduced charge recombination at the interface of perovskite/GO-
MoOx, leading to better power conversion efficiency of 16.7% as
well as enduring stability. In a similar experiment, Xie et al. [145]
showed that even better stability and power conversion efficiency
of up to 18.5% can be achieved by using MoOx doped r-GO as a hole
transport layer. The results can be attributed to not only the doping
effect of the NPs to the 2D material, but also to the surface
morphology, film formation of the hybrid material, as well as its
surface contact angle with the perovskite material which is critical
to the perovskite solar cell performance. For instance, although Au
NP/GO hybrids show the highest transmittance and conductance,
their role as a hole transport layer in devices showed a decrease in
efficiency of 1.25% due to deterioration of the crystalline structure
of the perovskite material in the presence of Au NPs. NP/graphene
hybrids can also act as an electron transport layer, as shown by the
ZnO-graphene hybrid - a widely studied NP/graphene hybrid ma-
terial [146]. ZnO-GO nanoparticles have shown to increase con-
ductivity, as compared to pristine ZnO, by reducing the interfacial
resistance between the ZnO/GO and the perovskite layer [147].
Similar results were shown for increased conductivity in SnO2
where incorporation of graphene quantum dots with SnO2 led to
improved conductivity as compared to pristine SnO2 [148,149].
Another important aspect of the NP/graphene hybrid was shown by
Tavakoli et al. [150], where incorporation of graphenewith ZnOwas
shown to assist in high temperature annealing during the forma-
tion of perovskite crystal, as compared to pristine ZnO, that results
in formation of bigger grains of perovskite.

Several different integration schemes, and associated improve-
ments in device performance, have been reported for other NP/2D
material hybrids, such as C/GO [151], Au/Gr [152], and MoO3/Gr
[142]. One of the many benefits of incorporating graphene-NP
composites in solar cells is also that the processing can be carried
out at much lower temperature than what is required for pro-
cessing of conventional electron collection layer such as titanium
dioxide (TiO2) [141]. The use of these nanohybrids can thus pave the
way forward for low-temperature processed high-efficiency solar
cells for future.

5. Catalysts in energy applications

Many reactions necessary for future energy technologies, such
as the hydrogen evolution reaction (HER) for a hydrogen energy
economy, or the oxygen evolution reaction and oxygen reduction
reaction (OER and ORR) for fuel cell cathodes, currently require rare
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and expensive noble metal catalysts to be viable. There has been
significant recent research activity into harnessing the properties of
low-dimensional materials to enhance catalyst activity, selectivity,
and durability, and thus addressing the challenge of developing
more cost-effective catalysts for these reactions [153e157]. These
properties, such as electronic structure manipulation via quantum
confinement or enhancing the photosensitivity through creation of
surface plasmon resonances, allow for the tailored engineering of a
catalyst for a particular reaction [158]. By combining low-
dimensional systems in a 0D-2D heterostructure we increase the
parameter space available for such catalyst design, and also facili-
tate the exploitation of other complementary properties, such as
high surface area, good conductivity [8,159e162], or durability
under adverse pH conditions [163,164]. Physically, space confine-
ment of the catalyst between 2D sheets can assist in the selectivity
and stability of the catalyst, with a tailored geometry allowing for
control of the reactant adsorption behavior [165].

A recent example of a 0D-2D heterostructure catalyst is the
combination of 2D graphitic carbon nitride (g-C3N4) (Fig. 5a)
partnered with nanoparticles for the photocatalysis of water
splitting and other reactions [166]. The g-C3N4 nanosheets exhibit
good stability, decent transport properties and are economical to
prepare, which along with their 2.7 eV bandgap and 2D quantum
confinement make them appealing candidates for photocatalytic
applications [167,168]. However, g-C3N4 on its own suffers from
rapid carrier recombination, limiting its quantum efficiency [169].
Thus pairing it with a nanoparticle cocatalyst is appealing, with the
interfaces facilitating separation of the photoinduced charges
[170e173]. Partner catalysts include noblemetal nanoparticles such
as gold, which in addition to helping with charge separation also
improve the amount of light absorbed due to their surface plasmon
resonance [174e176], and semiconductor quantum dots such as
cadmium sulfide (CdS), with the heterojunction aiding in charge
separation and improving photocatalytic efficiency (Fig. 5b)
[177e183]. The 0D and 2D component combined complement and
enhance the overall activity and performance of the paired system,
beyond the 2D material simply acting as a supporting scaffold for
active 0D nanoparticles.

This section will explore the use of 0D-2D hybrids as catalysts
for several energy applications. It will discuss how the combination
of 0D and 2D components enhances the catalytic performance
beyond the sum of their parts, as illustrated with the above
example, in the development of catalysts for the important oxygen
reduction, hydrogen evolution, and CO2 reduction reactions. We
will review example areas which have had significant research
undertaken into the potential of 0D-2D composite catalyst mate-
rials, in particular catalysts for hydrogen generation, fuel cell
cathodes, and CO2 reduction.
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5.1. Hydrogen generation

The efficient synthesis of hydrogen will be crucial for the reali-
zation of a hydrogen economy, and so is a major target for electro-
and photocatalyst research. Currently, Pt and other precious metal
catalysts are considered to be themost efficient [184,185]; however,
their high cost impedes their widespread use. One approach is to
optimize the precious metal utility by maximizing activity and
minimizing catalyst loss or deactivation with use. This can be
achieved by anchoring small nanoparticles or single atoms of the
precious metal on a graphene or g-C3N4 host [29,186e193], or to
partner the precious metal with a less expensive cocatalyst
[194e196]. While this method has merits, the majority of research
has instead focused on an alternative approach; replacing the
precious metal constituent with an alternative catalytically active
material.

Leading nonprecious metal candidates include transition metal
(Ni, Fe, Co, Mo) sulfide, carbide and phosphide compounds
[197e205], with MoS2 sulfur-terminated edge sites a particular
area of interest due to the favorable Gibbs binding energy for H2
[206,207]. As MoS2 is a layeredmaterial, it presents a good partner
2D component in a 0D-2D heterostructure HER electrocatalyst, as
it can act both as an effective supporting scaffold for various
nanoparticle catalysts e due to its good conductivity, durability,
and resilience to extremes in pHe and also contributes toward the
overall HER activity [208]. Combining it with a nanoparticle
cocatalyst (e.g. Pt, Au, Ni2P) distributed on the MoS2 sheets means
that the basal plane area of the MoS2 is effectively catalytically
active as well, rather than activity limited to just the edge sites,
and thus maximizing the effective active area of the electrode
(Fig. 6a) [39,41e43]. However, the typically higher defect density
of the MoS2 edges vs. the basal plane tends to encourage prefer-
ential nanoparticle decoration along the MoS2 edges, rather than
the more desirable basal plane [39,42]. This can be seen in the
TEM characterization of Li et al. [42], where at low loading the Pt
nanoparticles are preferentially located along the MoS2 edges
(Fig. 6c).

The activity of MoS2 (and the similar WS2) toward the HER can
be enhanced by reducing its dimensions to a quantum dot, due to
the increased defect density and active sulfur terminations [211].
Fig. 6. 0D-2D HER catalysts based on MoS2. (a) Schematic illustrating Pt nanoparticles on ve
grown MoS2. (c) TEM image of MoS2 flakes with low Pt (0.11% wt.) loading and (d) high Pt l
MoS2 nanoparticles, electrophoretically deposited vertically on a F-doped tin (IV) oxide (SnO
insert showing an attached MoS2 nanoparticle [209]. (h) The preparation of MoS2 decorated
MoS2 nanoparticles attached to the reduced GO [210].
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This reduction from 2D to 0D leads to problems with their
agglomeration and detachment from the electrode. Therefore
pairing the dichalcogenide quantum dot with a partner 2Dmaterial
host, such as (r-) GO [114,210,212,213], g-C3N4 [180], MoS2 flakes
[209], or metallic VS2 [214], is desirable for improving the stability,
enhancing 0D component dispersion, and ensuring excellent elec-
trical coupling between the 0D and 2D component. The work of
Bayat et al. maximizes the number of available MoS2 edge sites by
combining MoS2 nanoparticles with vertically oriented MoS2
nanosheets (Fig. 6eeg), allowing for the supporting 2D component
to also provide active edge sites [209]. One of the earliest works
demonstrated the importance of MoS2 nanoparticles having a large
abundance of edge sites through simple in-situ formation onto
reduced GO flakes (Fig. 6hek) [210]. MoS2 sheets have also been
paired as a cocatalyst with semiconducting quantum dots (e.g. TiO2,
CdS) in photocatalytic water splitting reactions for hydrogen for-
mation [181,215e217], where the MoS2 helps to prevent charge
recombination, generally increases the number of active sites, and
improves electron transport e especially when additionally
composited with graphene [218e221].

Single atomic doping of MoS2 has shown significant promise for
the hydrogen evolution reaction (HER). The addition of dopants can
have the dual effect of providing active sites from the dopant or-
bitals, and also increasing the defectiveness of the MoS2 basal
plane, generating more S terminated edge sites that are active to-
ward the HER [16,222e224]. Deng et al. experimentally studied Pt
doping of MoS2 toward the HER, and further extended this by
exploring the effect of other dopants by modeling. The site that the
metal atoms occupy is key, with direct substitution for the Mo site
being inferior to a more interstitial position; the interstitial dopant
configuration leaves unsaturated, and therefore catalytically active,
sulfur neighbors [16]. Metal dopants like V and Cr, which prefer
direct substitutions for Mo [225], are thus expected to be signifi-
cantly less active than larger dopants such as Pt. The addition of
certain other metal dopants can also modify the electronic struc-
ture for better energy level matching for electron transfer to the Hþ,
improving the thermodynamic favorability of the HER. Zn dopants
are particularly effective for this [226e228].

Beyond the sulfides, other transition metal compounds that
have been employed successfully for 0D-2D heterostructure HER
rtically grown chemical vapor deposition (CVD) MoS2 sheets. (b) SEM image of the CVD
oading (11% wt.) [42]. (e) Graphic showing the structure of MoS2 flakes decorated with
2) substrate. (f) SEM image of the deposited flakes. (g) TEM image of a flake, with the
reduced GO sheets. (i,j) SEM images of the prepared catalyst. (k) TEM image showing
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catalysts include transition metal phosphides, carbides, and oxides.
Transition metal carbides, such as Mo2C, have been shown to have
good HER activity and robustness to dissolution; however, they can
be challenging to synthesize in a nanoparticulate form, often
oxidizing or becoming clogged with excess carbon [229]. It has
been found that the in-situ preparation of the Mo2C nanoparticles
on a graphitic carbon support, such as graphene or carbon nano-
tubes, can minimize these problems due to the strong interaction
between the Mo2C and the graphene [230]. This strong interaction
also inhibits the ripening, aggregation, and detachment of the
prepared nanoparticles when catalyzing the HER, thus yielding a
catalyst with excellent activity and durability [231]. Phosphides,
and especially cobalt phosphide, have been intensely investigated
for HER catalysis, with the balance between P andmetal atom ratios
along active facets being a key determinant in the catalyst effec-
tiveness [232e234]. Many works have integrated phosphide
nanoparticles into graphitic-sheet supports, either by dispersing
them straight to the sheets or by encapsulating the nanoparticles in
a graphene envelope, benefitting the charge transport and dura-
bility [164,203,235e240]. Nitrogen doping of the graphene support
can enhance the overall catalytic activity of these hybrids by
providing more active sites [241e243]. Cobalt's particularly low
energy barrier for hydrogen adsorption [244] make it a popular
HER catalyst candidate in its oxide and native forms as well, with
similar benefits observed by pairing their nanoparticles with a (N-
doped) graphene support [245e248], for instance by overcoming
the low conductivity of Co3O4 [249], or encapsulating to minimize
aggregation [250,251]. Future research could explore linking some
of the aforementioned 0D metal compounds with 2D MXenes
[252], yielding new hybrid catalysts [253].

Demonstrating an efficient HER with an entirely metal-free
electrocatalyst is the ideal scenario, and there is potential that
this may be viably achieved with suitably doped graphene. Leading
dopant candidates are B, N, O, S, and P [254,255]. Jiao et al. recently
conducted a systematic modeling and experimental analysis of
these various doping configurations, taking care to also consider
the different possible atomic configurations a dopant can occupy
within the graphene lattice (edge vs. bulk sites, pyridinic vs.
graphitic, etc.) [256]. These studies revealed that boron doping
yielded the best activity per dopant site, and also suggested that
even a theoretically ideal doped graphene catalyst would struggle
to achieve the activity of a standard Pt based catalyst [256], even
when pursuing a multi-element doping strategy [257]. Compos-
iting nitrogen doped graphene with g-C3N4 has shown promise for
promoting the activity further, with the extra active sites offered by
the porous g-C3N4 suggested as one possible reason for the sig-
nificant improvement in activity [258,259].

5.2. Catalysts for fuel cells

Fuel cells, along with batteries, are a primary energy storage
candidate to support societies shift to carbon-free technology, with
applications in electric cars and power grids. There are a variety of
fuel cell architectures, with two of the current leading contenders
being the direct methanol fuel cell (DMFC) and the proton elec-
trolyte membrane fuel cell (PEMFC) [260e262]. As these types of
fuel cell operate at or near room temperature, a catalyst is required
to expedite the reactions at their electrodes. The most effective of
these catalysts are noble metal nanoparticles, which while effective
suffer from high cost. A major problem is their degradation with
use, with the nanoparticles detaching, dissolving, ripening and
agglomerating over time, necessitating high initial loading of the
electrodes to offset this decay and thus increasing costs yet further
[263]. As a result, research focuses on either improving the activity
and resilience of the noble metal catalyst, and so reducing the
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amount required, or finding an alternative catalyst material that
does not require expensive elements. Nanomaterial design, in
particular combining 2D and 0D materials, has shown significant
promise in both these areas [264e267].

A crucial reaction in a DMFC is the catalyzed oxidation of
methanol at the anode, reacting with water to produce the protons
and electrons for the fuel cell to operate, and that is typically the
rate limiting step [268,269]. The methanol oxidation reaction
(MOR) is typically catalyzed by platinum alloys (particularly
PteRu), minimizing the effect of surface poisoning from CO species,
with research into alternative Pt-free catalyst not as developed as
for the cathode reaction [270,271]. As such, much of the research
has focused on reducing the size of the Pt-based nanoparticles and
maximizing their activity per mass [272]. The 0D-2D application
centers on applying these delicate Pt alloy nanoparticles to gra-
phene membrane supports [273] that can maintain their ultra-fine
size over many cycles (Fig. 7aef) [34], while also providing a du-
rable, conductive, and high surface area scaffold [274]. A variety of
methods have been reported on preparing Pt and Pt alloy nano-
particles on to graphene and (r-)GO [36,275e283], leveraging
graphene's excellent properties as a catalyst support, and often its
important role in helping nucleate the nanoparticles during syn-
thesis [284e286]. Recently, the encapsulation of Pt nanoparticles in
multiple graphene layers has been also shown to help with the Pt
stability toward electrocatalysis of the MOR [287]. Including nickel
hydroxide nanoparticles with the Pt on the graphene host has been
used to complement the Pt activity, by assisting with water disso-
ciation from the electrolyte and assist the removal of deactivating
CO species on the Pt [288]. Pt-based catalysts dominate for the
MOR; however, some alternatives exist that have been paired with
graphene in a 0D-2D heterostructure. Fe3O4 and Fe3O4eAu core-
shell nanoparticles dispersed on GO have been shown to be
workable, Pt free, catalysts for the MOR [289]. And NiCo2O4 catalyst
nanoparticles, which lack in electrical conductivity, benefitted
significantly from the high electrical performance gains from being
dispersed on a r-GO support [290].

In fuel cells, and particularly PEMFCs, a major limitation is the
sluggish rate of the oxygen reduction reaction (ORR) at the cathode.
Currently Pt, or occasionally Pt alloy [292], nanoparticle catalysts on
carbon black are used; however, their high costs and poor lifetime
durability are major impeding factors in commercial scalability
[293]. Finding alternative catalyst nanostructures, which either
give Pt catalysts that are more efficient and durable, or to findmore
effective alternatives that remove the need for Pt entirely, will be
essential for allowing PEMFCs to be market-viable [294]. 0D-2D
hybrids offer potential research avenues in both the realization of
more efficient Pt-based ORR catalysts, and the development of
viable Pt-free ORR catalysts [295].

The exploration of 0D-2D composite catalysts to improve Pt
utilization has often simply been a case of using graphene as a
replacement for carbon black as the support [296], providing
improved adhesion of the catalyst to the electrode, superior dis-
tribution and high loading of small sized nanoparticles, and being
more robust to the low pH operating conditions [297,298]. This can
help militate against the disadvantages of conventional Pt (or Pd)
catalysts, by facilitating smaller morphologies, thus providing more
active sites per weight, and reducing activity loss through detach-
ment and etching [263,299]. Other than standard nanoparticle
catalysts [92,300,301], partnering graphene supports with novel Pt/
Pd morphologies, such as concave nanocubes [302], nanocages
[303], or nanorings [304], are a promising route to further optimize
the catalytically active surface area for a given mass. Forming
bimetallic Pt alloy nanoparticles on the graphene, in particular with
Co [305e308], has also been shown to be an effective strategy for
minimizing Pt or Pd loading while also improving activity



Fig. 7. 0D-2D fuel cell catalysts. (aef) TEM of Pt nanoparticles uniformly distributed to tunable concentrations on functionalized GO for methanol oxidation. The precursor Pt
weighting increases from (a) to (f) [34]. (gei) Graphic of the preparation of Co oxide nanoparticles on to a B and N doped graphene host for coupled catalysis of the ORR [291]. (j)
Schematic showing the preparation of graphene encapsulated Pt nanoparticles onto a carbon support suitable for the ORR. (k) Aberration corrected TEM of a graphene monolayer
shell wrapped around a Pt nanoparticle [15].
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[309e314], with the added metal reducing the binding energy of
OH species, ensuring active sites remain free and available for O2
adsorption.

Successful realization of an active and durable Pt-free ORR
nanocatalyst is an alternative approach for solving the PEMFC
cathode problem. Many novel catalyst candidates have been inte-
grated with a graphene scaffold, similarly to the aforementioned
Pt-based works, including transition metal oxide [315,316] and
carbide nanocatalysts [317]. Co oxides and other Co compounds
have been particularly successful [318e324], in particular when
synergistically partnered with N doped r-GO [291,325], with the
initial GO support providing a multitude of nucleation sites for
nanoparticle formation (Fig. 7gei). Graphene is an equally effective
support for these nonprecious electrocatalysts. In a number of
these works, it was found that the graphene's role is beyond simply
being a conducting scaffold for the active 0D electrocatalyst, as
doping of the graphene introduces active sites on the 2D material
itself, meaning it contributes as a cocatalyst rather than just a
support [297]. The importance of this synergy was demonstrated
by Liang et al. [325], where they show that Co oxide nanoparticles
or N-doped graphene in isolation have poor activity, and only
together do they yield good performance. The dopant atom, typi-
cally N, breaks the regular sp2 hybrid bonding of the graphene,
yielding local active sites with an electronic structure dependent on
the dopant. In the case of N doping of a regular graphene lattice
either a pyridinic or graphitic bonding can occur to accommodate
the N [297,326], with pioneering work by Guo et al. revealing that
specifically the pyridinic structure appears to provide the ORR ac-
tivity [327].

Other than doped graphene, there have been few reports of
other 2D supporting materials exhibiting significant co-activity
toward the ORR. W oxide nanosheets coupled with Pd and Pt
nanoparticles have been reported, with a significant boost in ac-
tivity toward ORR measured when they are paired together
compared to each acting in isolation [328,329]. And a recent
comprehensive modeling survey suggested that a novel two-
dimensional molybdenum carbide (2D MoC2), a 2D carbide similar
to MXenes, may be an effective cocatalyst and support for a 0D
catalyst partner [330]. As a conductive scaffold, and as a template
for nanoparticle nucleation and growth, 2D MoS2 has shown some
promise for oxygen reduction reaction (ORR) 0D-2D catalysis, with
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the particular advantage over graphene of facilitating the growth of
small nanoparticles or unique morphology nanocrystals [331,332],
and potentially assisting with the oxygen transfer kinetics to the
catalyst [333].

Recently, there has been a surge of interest in encapsulating
nanoparticle catalysts in a graphene envelope, enhancing the cat-
alyst's activity and especially its durability. Some works have
explored the encapsulation of the traditional Pt nanoparticle ORR
catalysts, enveloping in amorphous carbon [334,335], h-BN [336],
or graphene (Fig. 7j and k) [15,337,338]. These demonstrated that
encapsulation yielded significant improvements in durability,
reducing the decay in catalyst activity over extended cycling.
However, more recent works have focused on exploring the plat-
inum (Pt)-free catalysts, in particular transition metal carbides and
oxide nanoparticles [339e344]. Many have used N-doped gra-
phene as the encapsulating 2D material, and while it seems to give
optimal activity, there is some ambiguity over the mechanism of
activity. One theory is that the N-doped graphene promotes elec-
tron transfer from the nanoparticle core, which along with the
graphene surface gaining a higher electron density from the N
doping yields potential active sites for the ORR [345e347]. Another
explanation could be that the N-doping opens pores in the gra-
phene envelope, allowing reactants and products to interact more
easily with the nanoparticle surface [15]. Regardless of the activity
mechanism, encapsulation is nearly universally observed to
improve nanoparticle resilience, acting as a protective shield
against dissolution, ripening, poisoning of active sites, and
detachment, and thereby yielding improved activity compared to
‘naked’ catalysts over prolonged cycling [347,348].

This discussion of N-doped graphene, and its role in catalysis of
the ORR, brings us to the application of single atom catalysts for the
ORR. Metal-free catalysis via doping single sites in a graphene host
[349,350], in particular with nitrogen [351e353], has been pursued
as a single-atom catalyst candidate. While performance has been
promising, understanding the mechanism that allows for direct
one-step ORR, as opposed to other nondesired reaction paths, has
proven difficult. Disentangling the role of the different types of N-
doping site (pyridinic vs. graphitic direct substitution) [327,354],
the potential activity of free edge sites [355e359], and the presence
of other functional groups and defects [360e363], can complicate
the picture. Introducing metal single atom dopants into graphene
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has also been explored, allowing for ultimate dispersion of metal
active sites. Dopants including Cu [364,365], Fe [366,367], Co [368],
and Ru [369] have been employed successfully, although achieving
high metal loading and long term durability remains a challenge
due to the difficulty in securely anchoring the single metal atoms
into the graphene lattice. The aforementioned references typically
use defective graphene, such as graphene oxide, as the source
material, allowing for metal dopant integration into the existing
defect sites. However, an alternate approach is to employ g-C3N4 as
the 2D host, with its regular array of anchor points providing a
template for potential metal doping sites. This has been success-
fully demonstrated with Fe [370], where the g-C3N4 as the initial
scaffold can be pyrolyzed into a more graphitic structure [371].

5.3. Catalysts for CO2 reduction

The ability to synthesize useful fuels from an unwanted waste
product, namely CO2, is clearly desirable. Being able to perform
CO2 reduction efficiently via a photocatalytic reaction would
provide a valuable source of environmentally friendly fuel [372].
However the reduction is particularly difficult [373], with many
photocatalysts only achieving low conversion efficiencies [374],
and conversion to compounds with two or more carbons proving
particularly difficult [375]. Photocatalytic CO2 reduction can use
either water or hydrogen as the reducing agent, with the former
reaction sometimes instead referred to as artificial photosyn-
thesis. A suitable photocatalyst must achieve both good electron-
hole pair separation following photoexcitation, and have a
favorable surface interaction with CO2 to make it more amenable
to reduction [376e378]. As with other photocatalytic reactions,
TiO2 nanoparticles are frequently employed as the semi-
conducting component, often paired with a metal nanoparticle
catalyst such as Cu or Ag to improve methane yield [379].
Recently, there has been significant interest in combining these
nanoparticles with r-GO or g-C3N4, to enhance overall activity
and durability [380e382].

Beyond being a robust and high surface area support, inte-
grating graphene with semiconductor nanoparticles promotes
separation of charges, with the graphene being a high mobility
electron acceptor that thus helps prevent premature charge
recombination [385e387]. There is also evidence that the gra-
phene, and in particular the more defective reduced graphene ox-
ide, can enhance the overall activity by providing binding sites for
CO2 [388,389]. Thus integrating semiconducting TiO2 or CdS
nanoparticles with r-GO has yielded promising photocatalysts for
CO2 reduction [390e392]. However, to enhance the efficiency
further, and potentially allow for the production of useful higher
order carbon products such as ethane [393], the addition of a
metallic cocatalyst is typically desired, such as Pt or other noble
metals [394,395]. Copper and copper oxide nanoparticles have also
been frequently paired with graphene for CO2 reduction, with the
Cu particles offering effective hosts for multi-electron reduction
reactions when paired with graphene (Fig. 8aec) [383,396e398].

As discussed, g-C3N4 has attracted attention as a 2D light
harvester in photocatalysts for water splitting, and there has been
some work exploring its effectiveness toward CO2 reduction [381].
Its low electrical conductivity can lead to unfavorable charge
recombination rates, and so pairing with graphene or carbon dots
can be an effective metal-free strategy to counteract this drawback
[399e401]. Alternatively, partnering it with another semi-
conductor, such as Ag halides or Fe oxide nanoparticles, in order to
form a heterojunction will also improve carrier lifetime and thus
activity [402e405]. The deposition of Pt nanoparticle cocatalysts
to g-C3N4 enhances activity toward CO2 reduction, similar to re-
ports of Pt with graphene, but also can help offset the charge
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recombination problem, as the Pt nanoparticles may trap the
excited photoelectrons [406,407].

As an alternative to the photocatalytic method, the electro-
catalytic reduction of CO2 uses an electrolyzer with two electrodes
separated by an ion conducting membrane, with the anode pro-
ducing oxygen via the OER, and the cathode reducing CO2. It re-
mains challenging due to the poor reduction kinetics and ensuring
good selectivity of the reaction product [408], yet the tailoring of
two dimensional materials holds promise for overcoming these
problems, such as by lowering the CO2 adsorption energy barrier
with doped graphene [409]. Metal doping of graphene sheets have
been explored as potential electrocatalysts for the cathode
[410,411], with most attention devoted to the integration of Ni
single atom sites into nitrogen doped graphene [412e415]. These
reports all integrated the single atom into the graphene host by
utilizing the nitrogen dopants as anchor sites, situating the metal
into an in-plane interstitial position in the graphene sheet (see
Fig. 4f) [384]. These metal active sites are highly active, selective to
CO2-to-CO reduction, readily accessible to reactions on the basal
plane, andwith appropriate chemical engineering can be uniformly
distributed across a graphene sheet [412]. Beyond graphene, Nb
doping of CVD grown MoS2 has been shown to significantly
enhance the activity is MoS2 toward CO2 reduction to CO, with
modeling suggesting this improvement was due to the Nb near the
edge decreases the binding strength of CO [416].

Unfortunately, despite the above progress, few 0D-2D electro-
catalysts have shown good yields of the more desirable C2þ or non-
CO products. Some progress has recently been made in 2D material
catalysts toward these more desirable products [417e419]. Future
research directions could seek to improve these new 2D electro-
catalysts through integrating with suitable 0D cocatalyst compo-
nents, such as noble metal nanoparticles or by dopant introduction
[420]. A recent example is the combination of SnO2 particles with
thin Pd nanosheets, which facilitated the electrocatalytic reduction
of CO2 to methanol [421]. The Pd and SnO2 components have
already been explored individually as CO2 reduction electro-
catalysts, with SnO2 showing particular selectivity toward non-CO
products [422,423]. But their combination in a heterostructure,
with the extensive PdeSnO2 interfaces that the 0D-2D geometry
provides, helped to preferentially suppress CO formation in favor of
methanol [421].

6. Electrodes for rechargeable batteries

To support the push for greater renewable power generation,
decarbonization of our transport, and more powerful portable de-
vices, we require better rechargeable batteries. Improvements to
the current incumbent technology, the lithium-ion battery, are
being sought [424]. Beyond simply evolving Li-ion, the next gen-
eration of battery architectures, including Na-ion, Li-oxygen, Li-
sulfur, and even multivalent chemistries, are being keenly
researched [425e428]. Designing suitable electrodes that support
and are robust toward these reversible chemistries is one of the
core materials challenges in this research [429]. Application of
resilient and conductivematerials such as graphene are therefore of
great interest [430,431]. Here, wewill explore the role 2Dmaterials
can play in supporting and protecting a variety of anode nano-
particle candidates for Li-ion anodes, and how 0D-2D ORR catalyst
heterostructures may be of use in next-generation Li-oxygen and
Zn-oxygen battery cathodes.

6.1. Alloying and conversion anodes for Li-ion batteries

The anode, or negative electrode, in present Li-ion batteries use
graphite, which gives an upper specific capacity limit of 372 mAh/g



Fig. 8. 0D-2D CO2 reduction catalysts. (a) Work function and (b) band-edges of GO with and without Cu nanoparticles. Cu/GO-1, -2, and -3 refer to increasing Cu wt. % loading, with
5, 10, and 15% respectively. (c) Schematic showing the Cu-GO system [383]. (def) The inclusion of various single metal atoms into nitrogen doped graphene. (d) SEM image of the
graphene structure. (e) CO2 physisorption for the respective metal dopants. Insert shows the modeled pore size distribution. (f) Schematics showing the superstructure, and the
metal doping anchoring point, occupying an interstitial position and bonded exclusively to N [384].
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due to accepting one Li ion per six carbons [432]. Simply replacing
this anode with a pure Li metal anode would drastically increase
the capacity (lithiated capacity of up to 3,860 mAh/g), however
such anodes currently suffer from severe durability concerns [433].
Certain materials that can electrochemically alloy with lithium,
such as Si, Sn, and Ge, are promising alternative candidate materials
for the anode and are referred to as alloy anodes [434,435]. This
family of anode materials suffer from debilitating structural prob-
lems over cycling, leading to material fracture and detachment
from the current collector electrode.

Rather than forming alloys, an alternative approach is to utilize
the reversible electrochemical reactions possible between lithium
and certain transition metal compounds, forming into lithium ox-
ides and metal particles then reverting over the course of the
charge-discharge cycle. These metal oxides and chalcogenides are
known as conversion anodes and promise capacities two to three
times higher than that of graphite (600e1,000 mAh/g) [436]. As
with the alloying anodes, there is a challenge in devising electrodes
that are robust toward the large volume changes that occur during
charge cycling and have issues in ensuring good electrical con-
nectivity to the current collector due to the insulating character of
the metal oxides.

While the chemical cycling mechanism of these two types of
anodes is distinct, their principal drawbacks are the same; large
volume changes over the course of cycling that led to pulverization
of the electrode material, detachment from the current collector,
and compounded by the relatively poor electrical conductivity of the
electrode materials. Compositing with graphene has been shown to
be a promising strategy for combatting these failure modes, in both
alloy and conversion type anodes. In this section, we will illustrate
the utility of 0D-2D hybrids for Li-ion anodes by exploring the alloy
anode silicon, with the general concepts extending to graphene
composites with Sn [437], Ge [438], metal oxide [58,439e441], and
metal chalcogenide [442,443] anodes as well.

Silicon's giant theoretical delithiated capacity of 4,200 mAh/g
and low electrochemical potential have made it the most attractive
research candidate of the alloying anode materials. As discussed, in
practice Si has severe degradation problems; the volume change
silicon (Si) particles undergo during lithiation is particularly large
(over 300%) [435], which leads to fragmentation of the particles
and ultimately efficiency loss due to the continuous build-up of
surface-electrolyte interphase (SEI) products (Fig. 9aec). Compos-
iting the Si nanoparticles with 2D graphene can both improve the Si
resilience and the overall conductivity, with only a modest ‘weight
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cost’ associated with their inclusion. As such these 0D-2D hybrids
have attracted significant interest, with the graphene able to act as
a strong, flexible, and conductive scaffold for the Si particles. A
frequently employed approach is to encapsulate the Si particles in a
conductive layer, with initial attempts surrounding the silicon in
amorphous carbon [444,445]. Extending this approach to 2D
graphitic carbon has since been explored. One of the earliest re-
ports simply dispersed Si NPs in a suspension of GO sheets and
sonicated, then suction filtered to form a Si NPeGO 0De2D com-
posite paper, which was suitable for use as an anode following
reduction. The stacks of compressed r-GO sheets sandwiched the Si
NPs into the composite (Fig. 9def), providing good coulombic ef-
ficiency and capacity [446]. A number of further studies have used
modified or alternative synthesis methods, such as CVD or intro-
duction of NPs into Hummers' method expanded graphite, to
achieve a Si NP and graphene composite electrode [447e457], as
explored in detail in a recent review [458]. In-situ TEM imaging has
since clearly shown the beneficial influence of containing the Si
component within a graphitic shell (Fig. 9h and i), with the time-
series of TEM images acquired over lithiation and delithiation
showing the expansion and fragmentation of the Si NP, yet it
remaining securely contained within the graphene shell (Fig. 9j and
k) [459].

Some challenges with associated with this 0D-2D composite
electrode include optimizing the dispersion and maximizing the
utility of the Si NPs. Dispersion of the Si NPs across the graphene or
r-GO has been shown to benefit from the use of an intermediate
layer, such as poly-acrylic acid or phenolic resin. This helps to limit
the agglomeration of the NPs, and ensures good contact is main-
tained between the particles and graphene support after many
cycles [462e466]. And, as discussed in the previous section on
catalysts, encapsulation does bring with it the risk of blocking the
flow of reactants, as they are unable to easily flow through the basal
graphene plane [15]. Introduction of nanoscale defects into the
graphene can combat this problem, while still keeping the advan-
tages of good electrical conductivity and structural integrity
(Fig. 9g) [461,467]. However, this inclusion of defects risks making
the graphene chemically active, acting as a site for undesirable
electrolyte decomposition and the formation of SEI products [464].

6.2. Cathode ORR and OER catalysts for LieO2 and ZneO2 batteries

The cathode side of current Li-ion rechargeable batteries utilizes
metal oxides, typically cobalt lithium dioxide (LiCoO2) or lithium



Fig. 9. 0D-2D composites for silicon anodes in Li-ion batteries. (aec) The primary degradation mechanisms for silicon anodes [460]: (a) Pulverization due to volume change. (b)
Detachment of the electrode assembly. (c) Li lost from the electrolyte due to continuous solid electrolyte interphase layer (SEI) formation, as new electrode surfaces being (re-)
exposed during cycling. The thicker SEI also impedes ion conduction into the electrode. (d) Edge view SEM image of Si NP e GO composite electrode. (e) Edge view SEM image of Si
NP e r-GO composite electrode. (f) TEM image of the Si NP e r-GO composite electrode [446]. (g) Sketch of a composite electrode with holey defects in the graphene, facilitating ion
motion between basal layers [461]. (h,i) A cartoon illustrating the utility of an encapsulating graphene layer in preventing silicon fracture and detachment during charge cycling. (j)
Diagram illustrating an apparatus for in-situ TEM imaging of lithium cycling of a Si-graphene composite. (k) Time series in-situ TEM images showing the fracture of Si while
undergoing lithiation yet remaining safely confined inside the robust graphene shell [459]
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manganese dioxide (LiMnO2), relying on the open tetrahedral
structure for the easy movement of Li ions in and out of the host
crystal. A major area of current research activity is focused on
developing improved oxide hosts for the cathode [468], however
there is an inevitable limit to how far this can increase capacity.
Fundamentally new chemistries are required, and one of the more
promising is the use of an oxygen, or ‛air’, cathode [469,470]. These
offer the promise of a high theoretical capacity of 3,861 mA h/g,
which while not practically reachable, even achieving a fraction
would represent a large boost over the capacities offered by layered
oxide cathodes [471]. Such LieO2 batteries suffer from similar
problems to the related PEMFC, with sluggish ORR and OER kinetics
limiting the cycling rate, and overall poor durability of the cathode
electrode material. Designing robust bifunctional catalysts, capable
of enhancing both OER and ORR kinetics, is thus desirable to
combat this [472e475].

Several works have demonstrated that the 2D materials GO, r-
GO, and N-doped r-GO are themselves catalytically active to the
ORR, and so show potential as LieO2 cathodes [476e481]. However,
their activity is typically not sufficient to be practical, they aggre-
gate during use thus reducing their active surface area, and their
large overpotential is problematic. Thus compositing them with
nanoparticle catalysts to supplement their activity to ORR and OER
is a promising approach. Precious metal catalysts such as Pt and Ru
have shown promise [482], yet due to their high cost it is critical
that the nanoparticles maintain good connection with the sup-
port over sequential cycles. Graphene performs well in this regard
compared to conventional carbon supports like carbon black and is
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a further advantage in addition to the graphene being catalytically
active itself [483]. Loading the graphene, or r-GO, support with Ru
or RuO2 nanoparticles have been shown to be effective toward in
catalyzing the OER and removal of the Li2O2 discharge products
that accumulate at the cathode [484,485]. It has been suggested
that this may be due to Ru promoting the formation of different
Li2O2 morphologies during ORR that are more favorable to disso-
lution, rather than due to directly improving OER kinetics via
catalysis [486].

The disadvantage of using Ru or Pt catalysts are their high cost,
whichmay preclude their practical use. An alternative ORR and OER
catalyst without precious metal content are metal oxide spinels,
specifically those with Mn or Co transition metals [487e489],
however these are only poorly conductive and so greatly benefit
from compositing with materials such as graphene. 0D-2D com-
posites of CoMn2O4 nanoparticles on GOwere shown to be effective
bifunctional catalysts toward the OER and ORR in aqueous solvent
[490]. But the most studied oxide catalyst is Co3O4, whose catalytic
role appears to suppress electrolyte decomposing reaction path-
ways [491], and has been shown to exhibit high bifunctional ac-
tivity and stability toward the OER and ORR in an aqueous LieO2

cell [492]. As observed in related PEMFC studies, discussed earlier, a
synergistic effect between the graphene and the Co3O4 toward
catalyzing the ORR, and also the OER, highlighting the impor-
tance of graphene beyond being just a conductive support
structure [493].

The rechargeable ZneO2 battery has similar challenges to the
LieO2 cell, although the lower reactivity of Zn makes it more
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amenable to operation with aqueous electrolytes. While the ZneO2
concept has been around for a number of years, the challenge of
developing a cathode that can stably and efficiently catalyze both
the ORR and OER remains, with electrode corrosion, high over-
potentials, and leeching of metals from the catalyst being the
common limits to practical use [494,495]. The advantages of 0D-2D
hybrids are comparable to that case of Ln-O2, where graphene can
act as (i) a conductive and corrosion-resistant scaffold for nano-
particles [496e498], (ii) an ORR catalyst itself [499], particularly
when nitrogen dopants are introduced [500,501], and (iii) encap-
sulation of the nanoparticles in graphene helps reduce metal
leeching into the electrolyte [502].

Regardless of the nanoparticle material, designing a hierarchi-
cal, porous graphene electrode material to host the nanoparticles
further promotes performance, which can be achieved by growing
the graphene from a nickel foam or by linking r-GO sheets
[237,503]. The pores provide volume in which the Li2O2 (or ZnO)
particles can grow during discharge, allow for the diffusion of ox-
ygen, and for many points of catalytic contact with the Li2O2 during
the OER [504,505].

7. Conclusion

The combination of 0D and 2D materials presents a larger
parameter space for the design of new composites with properties
tailored for the desired application. As we have shown in this re-
view, the engineering of these complementary nanomaterial
combinations can yield superior solar cells, catalysts, and battery
electrodes. Preparation of 0D-2D composites will require the
development of synthesis techniques that are sufficiently simple to
be economical, and that also preserve the properties of the parent
0D and 2D components. Future development to realize the poten-
tial of these composites will require sophisticated materials char-
acterization to disentangle their structure-property relationship, in
particular for identifying synergistic effects where the combination
of the two materials yields a disproportionate improvement in
performance. In other words, how do we know what makes a
composite especially effective, and more than simply the sum of its
parts? We must do this via characterization of the 0D-2D com-
posite, and thus revealing the peculiar structures and interfaces
that give rise to the desired properties. Developing an under-
standing here will allow for the intelligent design of new com-
posites, reaching into the deep reservoir of emerging 2D materials
to achieve heterostructures with the desired combination of ac-
tivity, resilience, and cost.
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