4,583 research outputs found

    A low cost scheme for high precision dual-wavelength laser metrology

    Full text link
    A novel method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application where this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical with that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the non-common-path between metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic

    Using the quantum probability ranking principle to rank interdependent documents

    Get PDF
    A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements

    Low-cost scheme for high-precision dual-wavelength laser metrology

    No full text
    A method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology, which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application in which this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers, although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing the cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical to that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the noncommon path between metrology and science channels.This research was supported under the Australian Research Council’s Discovery Project funding scheme. Y. K. was supported by the University of Sydney International Scholarship (USydIS)

    Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity

    Get PDF
    Approximately 20  % of the UK population wear some form of denture prosthesis, resulting in denture stomatitis in half of these individuals. Candida albicans is primarily attributed as the causative agent, due to its biofilm -forming ability. Recently, there has been increasing evidence of C. albicans biofilm heterogeneity and the negative impact it can have clinically; however, this phenomenon has yet to be studied in relation to denture isolates. The aims of this study were to evaluate C. albicans biofilm formation of clinical denture isolates in a denture environment and to assess antimicrobial activity of common denture cleansers against these tenacious communities. C. albicans isolated from dentures of healthy and diseased individuals was quantified using real-time PCR and biofilm biomass assessed using crystal violet. Biofilm development on the denture substratum poly(methyl methacrylate), Molloplast B and Ufi-gel was determined. Biofilm formation was assessed using metabolic and biomass stains, following treatment with denture hygiene products. Although C. albicans was detected in greater quantities in diseased individuals, it was not associated with increased biofilm biomass. Denture substrata were shown to influence biofilm biomass, with poly(methyl methacrylate) providing the most suitable environment for C. albicans to reside. Of all denture hygiene products tested, Milton had the most effective antimicrobial activity, reducing biofilm biomass and viability the greatest. Overall, our results highlight the complex nature of denture- related disease, and disease development cannot always be attributed to a sole cause. It is the distinct combination of various factors that ultimately determines the pathogenic outcome

    Activation of an Endogenous Retrovirus-Associated Long Non-Coding RNA in Human Adenocarcinoma

    Get PDF
    Background Long non-coding RNAs (lncRNAs) are emerging as molecules that significantly impact many cellular processes and have been associated with almost every human cancer. Compared to protein-coding genes, lncRNA genes are often associated with transposable elements, particularly with endogenous retroviral elements (ERVs). ERVs can have potentially deleterious effects on genome structure and function, so these elements are typically silenced in normal somatic tissues, albeit with varying efficiency. The aberrant regulation of ERVs associated with lncRNAs (ERV-lncRNAs), coupled with the diverse range of lncRNA functions, creates significant potential for ERV-lncRNAs to impact cancer biology. Methods We used RNA-seq analysis to identify and profile the expression of a novel lncRNA in six large cohorts, including over 7,500 samples from The Cancer Genome Atlas (TCGA). Results We identified the tumor-specific expression of a novel lncRNA that we have named Endogenous retroViral-associated ADenocarcinoma RNA or ‘EVADR’, by analyzing RNA-seq data derived from colorectal tumors and matched normal control tissues. Subsequent analysis of TCGA RNA-seq data revealed the striking association of EVADR with adenocarcinomas, which are tumors of glandular origin. Moderate to high levels of EVADR were detected in 25 to 53% of colon, rectal, lung, pancreas and stomach adenocarcinomas (mean = 30 to 144 FPKM), and EVADR expression correlated with decreased patient survival (Cox regression; hazard ratio = 1.47, 95% confidence interval = 1.06 to 2.04, P = 0.02). In tumor sites of non-glandular origin, EVADR expression was detectable at only very low levels and in less than 10% of patients. For EVADR, a MER48 ERV element provides an active promoter to drive its transcription. Genome-wide, MER48 insertions are associated with nine lncRNAs, but none of the MER48-associated lncRNAs other than EVADR were consistently expressed in adenocarcinomas, demonstrating the specific activation of EVADR. The sequence and structure of the EVADR locus is highly conserved among Old World monkeys and apes but not New World monkeys or prosimians, where the MER48 insertion is absent. Conservation of the EVADR locus suggests a functional role for this novel lncRNA in humans and our closest primate relatives. Conclusions Our results describe the specific activation of a highly conserved ERV-lncRNA in numerous cancers of glandular origin, a finding with diagnostic, prognostic and therapeutic implications

    Keck Spectroscopy of 3<z<7 Faint Lyman Break Galaxies: The Importance of Nebular Emission in Understanding the Specific Star Formation Rate and Stellar Mass Density

    Get PDF
    The physical properties inferred from the SEDs of z>3 galaxies have been influential in shaping our understanding of early galaxy formation and the role galaxies may play in cosmic reionization. Of particular importance is the stellar mass density at early times which represents the integral of earlier star formation. An important puzzle arising from the measurements so far reported is that the specific star formation rates (sSFR) evolve far less rapidly than expected in most theoretical models. Yet the observations underpinning these results remain very uncertain, owing in part to the possible contamination of rest-optical broadband light from strong nebular emission lines. To quantify the contribution of nebular emission to broad-band fluxes, we investigate the SEDs of 92 spectroscopically-confirmed galaxies in the redshift range 3.8<z<5.0 chosen because the H-alpha line lies within the Spitzer/IRAC 3.6 um filter. We demonstrate that the 3.6 um flux is systematically in excess of that expected from stellar continuum, which we derive by fitting the SED with population synthesis models. No such excess is seen in a control sample at 3.1<z<3.6 in which there is no nebular contamination in the IRAC filters. From the distribution of our 3.6 um flux excesses, we derive an H-alpha equivalent width (EW) distribution. The mean rest-frame H-alpha EW we infer at 3.8<z<5.0 (270 A) indicates that nebular emission contributes at least 30% of the 3.6 um flux. Via our empirically-derived EW distribution we correct the available stellar mass densities and show that the sSFR evolves more rapidly at z>4 than previously thought, supporting up to a 5x increase between z~2 and 7. Such a trend is much closer to theoretical expectations. Given our findings, we discuss the prospects for verifying quantitatively the nebular emission line strengths prior to the launch of the James Webb Space Telescope.Comment: 16 pages, 9 figures, submitted to Ap

    Science and Technology Progress at the Sydney University Stellar Interferometer

    Full text link
    This paper presents an overview of recent progress at the Sydney University Stellar Interferometer (SUSI). Development of the third-generation PAVO beam combiner has continued. The MUSCA beam combiner for high-precision differential astrometry using visible light phase referencing is under active development and will be the subject of a separate paper. Because SUSI was one of the pioneering interferometric instruments, some of its original systems are old and have become difficult to maintain. We are undertaking a campaign of modernization of systems: (1) an upgrade of the Optical Path Length Compensator IR laser metrology counter electronics from a custom system which uses an obsolete single-board computer to a modern one based on an FPGA interfaced to a Linux computer - in addition to improving maintainability, this upgrade should allow smoother motion and higher carriage speeds; (2) the replacement of the aged single-board computer local controllers for the siderostats and the longitudinal dispersion compensator has been completed; (3) the large beam reducing telescope has been replaced with a pair of smaller units with separate accessible foci. Examples of scientific results are also included.Comment: 10 pages, 9 Figure

    Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    Get PDF
    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOCs). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle,~Urban Dynamometer Driving Schedule, and creep + idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photooxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary PM emissions and SOA production from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber – with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after 3 h of oxidation at typical urban VOC / NO<sub>x</sub> ratios (3 : 1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the nonmethane organic gas emissions that could not be speciated using traditional one-dimensional gas chromatography. The unspeciated organics – likely comprising less volatile species such as intermediate volatility organic compounds – appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep + idle operation was 3–4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation
    • 

    corecore