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Abstract. Environmental chamber (“smog chamber”) ex-
periments were conducted to investigate secondary organic
aerosol (SOA) production from dilute emissions from two
medium-duty diesel vehicles (MDDVs) and three heavy-
duty diesel vehicles (HDDVs) under urban-like conditions.
Some of the vehicles were equipped with emission con-
trol aftertreatment devices, including diesel particulate filters
(DPFs), selective catalytic reduction (SCR) and diesel oxi-
dation catalysts (DOCs). Experiments were also performed
with different fuels (100 % biodiesel and low-, medium-
or high-aromatic ultralow sulfur diesel) and driving cycles
(Unified Cycle, Urban Dynamometer Driving Schedule, and
creep + idle). During normal operation, vehicles with a cat-
alyzed DPF emitted very little primary particulate matter
(PM). Furthermore, photooxidation of dilute emissions from
these vehicles produced essentially no SOA (below detec-
tion limit). However, significant primary PM emissions and
SOA production were measured during active DPF regener-
ation experiments. Nevertheless, under reasonable assump-
tions about DPF regeneration frequency, the contribution of
regeneration emissions to the total vehicle emissions is neg-

ligible, reducing PM trapping efficiency by less than 2 %.
Therefore, catalyzed DPFs appear to be very effective in
reducing both primary PM emissions and SOA production
from diesel vehicles. For both MDDVs and HDDVs without
aftertreatment substantial SOA formed in the smog chamber
– with the emissions from some vehicles generating twice as
much SOA as primary organic aerosol after 3 h of oxidation
at typical urban VOC / NOx ratios (3 : 1). Comprehensive or-
ganic gas speciation was performed on these emissions, but
less than half of the measured SOA could be explained by tra-
ditional (speciated) SOA precursors. The remainder presum-
ably originates from the large fraction (∼30 %) of the non-
methane organic gas emissions that could not be speciated
using traditional one-dimensional gas chromatography. The
unspeciated organics – likely comprising less volatile species
such as intermediate volatility organic compounds – appear
to be important SOA precursors; we estimate that the effec-
tive SOA yield (defined as the ratio of SOA mass to reacted
precursor mass) was 9± 6 % if both speciated SOA precur-
sors and unspeciated organics are included in the analysis.
SOA production from creep + idle operation was 3–4 times
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larger than SOA production from the same vehicle operated
over the Urban Dynamometer Driving Schedule (UDDS).
Fuel properties had little or no effect on primary PM emis-
sions or SOA formation.

1 Introduction

Numerous studies have shown that organic aerosol is a ma-
jor component of atmospheric fine particulate matter (PM2.5)
(Kanakidou et al., 2005) and that secondary organic aerosol
(SOA) – formed in the atmosphere from the oxidation of
organic vapors – often exceeds the organic aerosol directly
emitted from sources (primary organic aerosol, or POA),
even in urban areas (Jimenez et al., 2009; Subramanian et
al., 2007; Stone et al., 2009). Diesel vehicles are an important
source of organic aerosol and SOA precursors, especially in
urban areas. However, the overall contribution of these emis-
sions to ambient PM2.5concentrations is uncertain (Bahreini
et al., 2012; Gentner et al., 2012).

SOA production from diesel emissions is a relatively new
area of research, but there is evidence that it may be an im-
portant organic aerosol source (Chirico et al., 2010; Mira-
colo et al., 2010; Samy and Zielinska, 2010; Weitkamp et al.,
2007; Gentner et al., 2012). Robinson et al. (2007) reported
substantial SOA production from a small diesel generator.
Chirico et al. (2010) found that emissions from a medium-
duty diesel vehicle (MDDV) produced substantial SOA mass
relative to black carbon (BC; roughly 0.4 ≤

SOA
BC ≤ 1.0) and

POA (SOA
POA

∼= 3.1) after 5 h of photooxidation.
The US Environmental Protection Agency (EPA) imple-

mented strict new PM emission standards in 2007 for diesel
vehicles, and similar standards were adopted in the Euro-
pean Union (2009 for light-duty and 2013 for heavy-duty).
These standards effectively required the use of diesel par-
ticulate filters (DPFs). In addition, in 2010 new US NOx
standards effectively required implementation of aftertreat-
ment (AT) technologies such as selective catalytic reduction
(SCR). The effect of these new control technologies on SOA
formation is not well understood. Chirico et al. (2010) report
that, although primary PM emissions remained unaffected,
SOA production was reduced by more than a factor of 20
for light-duty diesel vehicles equipped with a diesel oxida-
tion catalyst (DOC). This result is consistent with the well-
documented reduction in SOA precursors caused by DOCs
(Liu et al., 2008, 2010; Samy and Zielinska, 2010). However,
Chirico et al. (2010) did not test the vehicles over realistic
driving cycles.

Although aftertreatment technologies have been shown to
be highly effective in reducing primary emissions, higher-
emissions may occur during DPF regeneration (when the ac-
cumulated soot is burned off the DPF). During active DPF re-
generation, fuel is injected upstream of the DPF, and its com-
bustion generates sufficient heat to oxidize the trapped soot.

During regeneration both the PM mass and number concen-
tration can increase by orders of magnitude (Khalek et al.,
2011). Furthermore, even during normal (nonregeneration)
operation, DPFs can emit unexpectedly high concentrations
of nucleation mode particles (primarily sulfate) (Herner et
al., 2011).

Given their long lifespan, older, higher emitting diesel ve-
hicles without aftertreatment devices are likely to consti-
tute a significant fraction of the heavy-duty diesel vehicle
(HDDV) fleet for the next decade in the United States, and
longer in other parts of the world. Therefore, it would be ad-
vantageous if fuels could be reformulated to reduce emis-
sions. Miracolo et al. (2012) demonstrated that switching
from petroleum-based fuel to Fischer–Tropsch fuel dramat-
ically reduced SOA formation from dilute emissions from a
gas turbine engine. Extensive gasoline reformulation in the
1990s (and earlier) in the United States reduced ambient
ozone, NOx, carbon monoxide and air toxics concentrations
(Anderson and Rykowski, 1997). Odum et al. (1997) showed
that reducing the aromatic content of gasoline reduced the
SOA formed when evaporated fuel was photooxidized, sug-
gesting that fuel reformulation could be an effective strategy
for reducing SOA precursors from tailpipe emissions. How-
ever, combustion emissions are far more complex than va-
porized fuel; thus, the latter may not be a good surrogate for
the former in estimating SOA production.

In this paper, we present data from smog chamber experi-
ments investigating the SOA formation from dilute emissions
from two medium-duty and three heavy-duty diesel vehicles
that were equipped with different aftertreatment technolo-
gies, including DPFs and SCRs. The vehicles were operated
on a chassis dynamometer over standard driving cycles us-
ing different fuels (including diesels with a range of aromatic
content and 100 % biodiesel). We also characterized the pri-
mary emissions and secondary PM production resulting from
active DPF regeneration. Finally, comprehensive speciation
of the gas-phase emissions was performed to evaluate their
SOA formation potential. This research was conducted as
part of a larger project investigating the link between tailpipe
emissions from mobile sources and ambient PM. Compan-
ion papers summarize (1) the primary emissions data (May et
al., 2014), (2) the gas-particle partitioning of POA emissions
(May et al., 2013a, b), (3) the SOA formation from on-road
gasoline vehicles (Gordon et al., 2013a), and (4) the SOA for-
mation from small off-road engines (Gordon et al., 2013b).

2 Materials and methods

2.1 Vehicles

Table 1 lists the five diesel vehicles tested during this
study. Although this is a small fleet, the vehicles span a
range of emission control technologies. The three heavy-
duty diesel vehicles were equipped with six-cylinder, inline,
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Table 1. MDDV experiments were conducted at the California Air Resources Board (CARB) Haagen-Smit Laboratory; the HDDV experi-
ments were conducted at the CARB Heavy Duty Vehicle Laboratory (Herner et al., 2009; Pisano et al., 2011). The experimental setup and
procedures are essentially the same as those used for other vehicle testing by our group (Gordon et al., 2013a). A schematic of the experi-
mental setup is shown in Fig. 1a. The experimental design – including all combinations of vehicles, fuels, aftertreatment (AT) and driving
cycles – is provided in Fig. 1b.

Vehicle ID Emissions controls Model year Eng. size (L) Mileage Avg. mpg

HDDV
D1 DOC + DPF + SCR 2010 14.9 11 000 4.5
D2 DOC + DPF 2007 12.8 22 000 4.9

D3 none 2006 10.8 94 000 4.3

MDDV
D4 DOC 2005 6.6 66 000 11.8
D5 none 2001 5.9 159 000 13.7

direct-injection, turbocharged, heavy-duty diesel engines.
The 2006 HDDV (D3) had no exhaust aftertreatment. The
2007 HDDV (D2) had an original equipment manufacturer
(OEM)-installed catalyzed DPF. The 2010 HDDV (D1) was
equipped with an OEM-installed catalyzed DPF with a SCR
system. The two MDDVs were full-sized pickup trucks with
gross vehicle weight ratings between 8500 and 9500 lbs
(3900–4300 kg). The 2005 MDDV (D4) had a turbocharged
V8 engine equipped with a DOC. The 2001 MDDV (D5) had
a turbocharged inline six-cylinder engine with no aftertreat-
ment. The experiment naming convention is the vehicle ID
followed by the experiment number. For example, “D5.3”
refers to the third experiment with vehicle 5.

2.2 Fuels

The HDDVs were tested with three different ultralow sulfur
diesel (ULSD) fuels: low aromatic (9 % aromatic content),
mid-aromatic (12 % aromatic content) and high aromatic
(28 % aromatic content). Both of the MDDVs were tested
with a commercial ULSD purchased from a local gas sta-
tion, which was similar but not identical to the mid-aromatic
ULSD used in the HDDV experiments. The 2001 MDDV
(D5) was also tested on B100 soy-based biodiesel. Results
from fuel analyses are in the Supplement.

During the HDDV experiments fuel was supplied from ex-
ternal tanks to simplify fuel switching. After a fuel switch, an
active regeneration was performed on the two DPF-equipped
HDDVs. During fuel changes with non-DPF-equipped HD-
DVs, the recirculating fuel system was rinsed with five gal-
lons of the new fuel while the engine idled, followed by
20 min of high-speed driving. When the 2001 MDDV was
switched from ULSD to biodiesel, the vehicle’s fuel tank was
drained and filled with biodiesel and driven for∼1 h at 50–
60 mph prior to testing.

2.3 Driving cycles

Speed traces for the test cycles used in this study are plotted
in Fig. S3 in the Supplement. The MDDVs were tested us-
ing the cold-start Unified Cycle (UC), which was designed
to simulate urban driving in the Los Angeles area (Califor-
nia Air Resources Board, 1996). The majority of the HDDV
experiments were conducted using the Urban Dynamometer
Driving Schedule (UDDS), which represents urban operation
of HDDVs (Lammert et al., 2012). Following a 20 min warm-
up (10 min of driving at 50 mph and a 10 min hot soak), the
UDDS was run two times in immediate succession with no
hot-soak period between the cycles, and emissions were col-
lected over the entire 35.4 min double UDDS cycle. One test
with the non-DPF-equipped HDDV was performed using a
portion of the Heavy Heavy-Duty Diesel Truck (HHDDT)
driving schedule (Zhen et al., 2009). In experiment D3.5 the
creep phase of the four-phase HHDDT cycle (251 s) was run
three times in immediate succession followed by 1800 s of
idling (we refer to this as the creep + idle cycle). The emis-
sions from the two DPF-equipped HDDVs (D1 and D2) were
also characterized during stationary, active regeneration dur-
ing which the engine control system injects fuel upstream of
the DPF to induce combustion of the PM deposited in the
filter.

2.4 Experimental setup

The MDDVs were driven on a Clayton (Model AC-48) 48
inch (1.22 m) single-roll electric chassis dynamometer, and
the HDDVs were driven on a Schenck Pegasus chassis dy-
namometer. The HDDVs were tested with a nominal inertial
load of 56 000 pounds (250 kN). The entire exhaust was sam-
pled using a Horiba constant volume sampling (CVS) sys-
tem, and samples were collected from the CVS to charac-
terize the primary emissions. The primary PM mass emis-
sions were measured gravimetrically using Teflon® filters
nominally following the CFR 1065 procedures (CFR, 2008).
Carbonaceous aerosol emissions were characterized using
quartz-fiber filters analyzed with a Sunset Laboratory Or-
ganic Carbon/Elemental Carbon (OC/EC) Analyzer using
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Fig. 1. (a) Test setup used to characterize the primary emissions and to photooxidize them (not to scale). TD = thermodenuder,
OC/EC = organic/elemental carbon analyzer, PTRMS = proton transfer reaction mass spectrometer, SMPS = scanning mobility particle sizer,
Q-AMS = quadrupole aerosol mass spectrometer.(b) Experimental design matrix of all tested combinations of vehicles (D1 through D5,
Table 1) with different aftertreatment systems (no AT = no exhaust aftertreatment, DOC = diesel oxidation catalyst, DPF + DOC = catalyzed
diesel particulate filter, DPF + DOC + SCR = catalyzed diesel particulate filter + selective catalytic reduction), driving cycles (UC = Unified
Cycle, UDDS = Urban Dynamometer Driving Schedule, creep + idle, active regeneration) and fuels (D = commercial ULSD, BD = 100 %
biodiesel, and L = low-, M = medium-, and H = high-aromatic ULSD). Duplicate experiments are not shown.

the IMPROVE protocol (Chow et al., 1993). Samples from
the CVS were collected in heated Tedlar® bags and analyzed
offline for total hydrocarbons, methane, light hydrocarbons
(< C5) and mid-weight hydrocarbons (C5 to C12) using stan-
dard analytical procedures (California Air Resources Board,
2001, 2004, 2006). Carbonyl emissions were determined
from 1,4-dinitrophenylhydrazine (DNPH)-impregnated car-
tridges analyzed by high-performance liquid chromatogra-
phy. For the MDDV, emissions of 202 organic species were
quantified. A different analysis protocol was used for the
HDDV samples, which quantified the emissions of only 49
species. A complete list of organic species is provided in Ta-
ble S4. Organic mass that eluted from the gas chromatograph
that could not be individually identified were binned accord-
ing to Kovats index (elution time). Unspeciated nonmethane
organic gases (NMOG) with Kovats indices≥ 800 (i.e., n-
octane) were assumed to be SOA precursors; NMOG with
Kovats indices < 800 were assumed not to be SOA precur-
sors.

A slipstream of the dilute emissions from the CVS were
transferred via a 0.5-in-outer-diameter (o.d.)× 12 m-long
heated (47◦C) Silcosteel® (i.e., passivated internal bore)

tube into a 7 m3 Teflon® smog chamber (Hennigan et al.,
2011). Before each experiment the chamber was cleaned
by flushing with high-efficiency particulate air (HEPA)-
and activated-carbon-filtered air overnight. Vehicle emis-
sions were added to a partially filled chamber over the en-
tire driving cycle; thus, these experiments represent trip aver-
age emissions. The exhaust was diluted in three stages: first,
it was diluted about 10 : 1 with ambient-temperature HEPA-
and activated-carbon-filtered air in the CVS; it was then di-
luted about 8: 1 with 47◦C HEPA- and activated-carbon-
filtered air using Dekati ejector diluters in the transfer line;
finally, it was diluted about 2: 1 with ambient temperature
HEPA- and activated-carbon-filtered air in the smog cham-
ber.

For experiments with the DPF-equipped vehicles, approx-
imately 10 µg m−3 of ammonium sulfate seed aerosol was
injected into the chamber just before the vehicle was started.
No seed aerosol was added with the non-DPF-equipped ve-
hicles because of their high primary PM emissions. After
adding exhaust, nitrous acid (HONO) was bubbled into the
chamber as a hydroxyl radical (OH) source, and VOC / NOx
ratios were adjusted to approximately 3: 1 (typical of many
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urban environments; Fujita et al., 2002) by adding propene
(which does not form SOA; Kroll and Seinfeld, 2008): 2.9–
3.8 ppm for HDDVs and 0.7–4.1 ppm for MDDVs. Propene
is commonly added in chamber experiments to support oxi-
dation by rebalancing the direct sinks of OH radicals in fa-
vor of organics rather than NO2. Propene also increases the
steady-state level of peroxy radicals. Since the HDDV and
MDDV experiments were performed at two different facil-
ities in different locations, the light source for the MDDV
experiments was different than for the HDDV experiments.
After ∼45 min characterizing the primary emissions in a dark
chamber, the MDDV emissions were photooxidized for 3 h
by exposing them to UV lights (Model F40BL UVA, General
Electric), whereas the HDDV emissions were photooxidized
for 3 h by direct exposure to sunlight. The NO2 photolysis
rate in the chamber during the MDDV experiments was ap-
proximately 0.16 min−1, and the spectral characteristics of
the UV lamps (maximum output was at∼350 nm) are de-
scribed elsewhere (Presto et al., 2005b).

While the different light sources in the MDDV and HDDV
experiments could introduce some uncertainty, this is not ex-
pected to significantly impact our conclusions for at least
three reasons. First, as pointed out by Platt et al. (2013), the
emission fingerprint of the UV lamps as a function of wave-
length and temperature overlaps with the absorption cross
section for the photolysis of OH, O3, and HONO (Carter et
al., 1995). Therefore, despite differences in emission inten-
sity between UV lights and sunlight, UV lights are a good
sunlight surrogate. Second, the primary conclusions of this
paper are based on the HDDV experiments; thus, any vari-
ability in SOA production due to the different light sources
for the MDDV experiments should not alter the main find-
ings. Finally, similar SOA production rates were measured
for the different non-DPF-equipped vehicles regardless of
light source.

An array of instruments was used to characterize gas-
and particulate-phase pollutants inside the chamber. Particle
number distributions were measured with a scanning mobil-
ity particle sizer (SMPS, TSI, Inc., classifier model 3080,
CPC model 3772). Nonrefractory submicron aerosol mass
and chemical composition were measured with a quadrupole
aerosol mass spectrometer (AMS, Aerodyne, Inc.). Gas-
phase organic species were measured with a proton trans-
fer reaction mass spectrometer (PTR-MS, Ionicon) operated
in selected-ion mode with a time resolution of∼2.5 min.
The PTR-MS was calibrated daily using a custom gas stan-
dard from Spectra Gases. Gas monitors were used to mea-
sure CO2 (LI-820, Li-Cor Biosciences), SO2, NOx, CO, and
O3 (API-Teledyne Models 100E, 200A, 300A and 400E);
these monitors were zeroed daily and calibrated at least
weekly. BC emissions were measured with a single parti-
cle soot photometer (SP2, DMT, Inc.) and a seven chan-
nel Aethalometer® (Magee Scientific, Model AE-31). The
Aethalometer® data were corrected for particle loading ef-
fects using the method of Kirchstetter and Novakov (2007).

During the MDDV testing the smog chamber was located
indoors, in a large air-conditioned space; its temperature and
humidity varied within the ranges of 25–30◦C and 30–50 %.
During the HDDV testing the smog chamber was located out-
side; temperature and humidity in the chamber varied within
the ranges of 19–38◦C and 9–51 %. The quoted temperature
and humidity ranges describe the variability between differ-
ent experiments.

SOA formation is complex and depends on many factors,
including precursor concentrations, PM concentration, oxi-
dant exposure, and oxidation conditions (e.g., VOC / NOx)
(Hallquist et al., 2009). Given this complexity we attempted
to simulate urban conditions inside the chamber, focusing our
attention on variables known to strongly influence SOA for-
mation (PM concentrations and VOC / NOx). Initial concen-
trations for select pollutants (NO, NO2, 1CO2, etc.) for all
the chamber experiments (including a dynamic blank exper-
iment) are listed in Table S3 in the Supplement. Measure-
ments of EC, POA, primary PM and CO in the CVS and
SOA after 3 h of photooxidation are provided in Table S5
in the Supplement. Initial PM concentrations ranged from
34 to 56 µg m−3 for D3 operated on the UDDS (the creep
+ idle tests had much lower concentrations) and from 19 to
71 µg m−3 for the MDDVs. The mixing ratios of individual
single-ring aromatics in the chamber were typically less than
1 ppb. However, initial NOx concentrations were between 0.4
and 2.4 ppm for non-SCR-equipped vehicles and∼0.2 ppm
for the HDDV with the SCR. This is much higher than typical
atmospheric conditions and, in some experiments, required
the addition of substantial amounts of propene (Table S3) to
achieve the target VOC / NOx of ∼ 3 : 1 ppbC ppb−1 NOx. In
addition, the mix of organics inside the chamber (diesel ex-
haust + propene) is different than a typical urban mix. While
the chamber experiment can never exactly reproduce urban
conditions, these measures help ensure that the important
radical branching channels such as the fate of organoperoxy
radicals (RO2) are similar to those in the atmosphere (Presto
et al., 2005a; Lim and Ziemann, 2009; Ng et al., 2007).

2.5 Data analysis

Pollutant data are reported per mass of fuel burned (mg pol-
lutant kg-fuel−1):

EF=
[P ]

[CO2]
·

MWCO2

MWC
· Cf, (1)

where[P ] is the background corrected pollutant concentra-
tion in µg m−3, [CO2] is the background corrected concentra-
tion of CO2 in the chamber in µg m−3, MWCO2 is the molec-
ular weight of CO2 (44.1 g mol−1), MWC is the molecular
weight of carbon (12 g mol−1) and Cf is the carbon inten-
sity of the fuel determined from fuel analyses (0.85 kg C kg-
fuel−1 for diesel, 0.77 kg C kg-fuel−1 for biodiesel). Equa-
tion (1) assumes that all carbon in the fuel is converted to
CO2. This assumption was verified with the CO and NMOG
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data; for example, the CO / CO2 ratios for MDDV and HDDV
were less than 0.005.

Hydroxyl radical (OH) levels in the chamber were in-
ferred from the decay of VOCs (e.g., toluene, xylenes,
TMB, propene) measured with the PTR-MS (Atkinson
and Arey, 2003). Typical experiment average OH levels
were 5× 106 molecules cm−3, which is within the range
of summer daytime atmospheric concentrations (Seinfeld
and Pandis, 2006). OH levels were generally higher (2–
3× 107 molecules cm−3) during the beginning of the pho-
tooxidation phase of the experiment and then fell as the
HONO was photolyzed.

The fragmentation table from Allan et al. (2004) was used
to interpret the AMS data. The contribution of gas-phase
CO2 to the AMS m/z 44 signal was corrected using the
measured CO2 concentrations. There was no evidence of or-
ganic particle signal atm/z 28 (CO+). Using the approach of
Farmer et al. (2010), only a minor fraction (typically < 5 %)
of the nitrate mass (which was usually quite small) was at-
tributable to organics.

To quantify SOA production in the smog chamber the
AMS and SMPS data were corrected for the loss of parti-
cles and vapors to the chamber walls. Details of this correc-
tion are contained in the Supplement. Briefly, the loss of or-
ganic particles to the walls is well constrained. It is treated as
a first-order process (McMurry and Grosjean, 1985) with a
rate constant determined from the measured decay of an inert
tracer species (BC or sulfate seed). The particle wall-loss rate
constant ranged from 0.46 to 0.66 h−1. Wall-loss rate con-
stants calculated from the Aethalometer® and the SP2 were
within 4 % (n = 8), indicating that the Aethalometer® mea-
surements were not influenced by SOA formation.

Using BC or sulfate as a tracer for particle wall loss re-
quires the assumption that the aerosol is internally mixed.
This assumption was valid for most experiments because the
size-resolved data (SMPS and AMS) only showed growth of
the primary-mode aerosol. However, the majority of particle
mass in the two regeneration experiments was formed from
nucleation, which requires correcting the wall-loss rate to ac-
count for the more rapid loss of smaller nucleation mode par-
ticles. This correction is discussed in the SI. In several of
the MDDV experiments the sum of the AMS measured non-
refractory components and BC was significantly lower than
the mass calculated from the SMPS size distributions. Such
deviations are likely due to differences in AMS collection
efficiency and are corrected as described in the Supplement.
These differences do not affect the conclusions of the paper.

The loss of condensable organic vapors to wall-bound par-
ticles was estimated by considering two cases (Weitkamp et
al., 2007). A lower bound estimate assumes no loss of vapors
to the chamber walls – i.e., that the mass transfer resistance
to the walls is much greater than to the suspended particles.
It is equivalent to the “ω = 0” correction utilized in previous
studies (Weitkamp et al., 2007; Miracolo et al., 2011). The
second estimate assumes that the particles lost to the walls

remain in equilibrium with the vapor phase (“ω = 1” correc-
tion; Weitkamp et al., 2007); therefore, the loss of organic va-
pors scales with the ratio of mass of particles on the walls to
particles in suspension. The two vapor loss estimates diverge
as more particles are lost to the wall, increasing the uncer-
tainty in the wall-loss-corrected SOA mass as an experiment
progresses (Hildebrandt et al., 2009). We imposed a 5: 1 up-
per bound on the ratio of OA on the wall to suspended OA.
This condition was binding in roughly half the experiments,
typically only later in the experiment after 1.5–2.5 h of pho-
tooxidation. We do not consider the loss of organic vapors
directly to the chamber walls (in distinction to their loss to
wall-bound particles) (Matsunaga and Ziemann, 2010). This
is highly uncertain; if included, it wouldincreaseour esti-
mated SOA production.

Chamber dynamic blank experiments were performed af-
ter filling the chamber with CVS dilution air (but no vehicle
exhaust), HONO, propene and ammonium sulfate seed par-
ticles. These experiments produced 1–3 µg m−3 of SOA over
a 3 h photooxidation period. This SOA is likely formed from
the residual vapors that desorb from the CVS, transfer line
and chamber walls. Therefore, for every chamber experiment
we assume an SOA blank of 0 µg m−3 at time (t) = 0 that in-
creases linearly to 2 µg m−3 of SOA at t = 3 h and subtract
this artifact from the reported SOA production.

3 Results and discussion

Figure 2 illustrates the temporal evolution of both particle-
and gas-phase species during a typical smog chamber ex-
periment (experiment D3.13). There are three distinct peri-
ods in each experiment. First, vehicle emissions are added to
the chamber throughout the entire driving cycle (the 35 min
2× UDDS is shown here), increasing the concentrations of
VOCs, CO2 and NOx. The second period begins when the
engine was shut off att =−2 h. The primary emissions were
characterized during this period. HONO was added to the
chamber at approximatelyt =−0.5 h, leading to a modest
increase in NO2 concentration. Propene was also added at
this time to adjust the VOC / NOx ratio to approximately 3.
The third period begins when the UV lights were turned on
(MDDV) or the chamber was exposed to sunlight (HDDV).
SOA was quickly generated at the beginning of this period;
while the wall-loss-corrected black carbon concentration (red
line in Fig. 2c) remained constant. After 3 h the wall-loss-
corrected organic aerosol increased by roughly a factor of 3
from ∼7 µg m−3 of POA to ∼26 µg m−3 of organic aerosol
(average of theω = 0 andω = 1 estimates in Fig. 2c). Dur-
ing the 3 h of UV irradiation much of the NO and primary
hydrocarbons are oxidized to NO2 and oxygenated VOCs,
respectively (Fig. 2a, b).

BC, POA and SOA for the entire fleet were measured
in the chamber and are summarized in Fig. 3. The SOA
data presented were measured in the chamber after∼3 h
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Fig. 2. Measured gas and particle evolution during a typical smog
chamber experiment with a non-DPF-equipped vehicle (D3.13).
Concentrations of(a) NOx, O3 and CO2, (b) two single-ring aro-
matic SOA precursors, and(c) suspended and wall-loss-corrected
organic PM and black carbon concentrations. The organic aerosol
(OA) concentrations were corrected using two different meth-
ods (ω = 0 and ω = 1) which provide an estimate of the un-
certainty of the SOA production. The OA (ω = 1) is capped
at about t = 2.6 h when wall OA/suspended OA = 5. Between
−2.5 h< time< −2.0 h, the chamber was filled with dilute emis-
sions from the vehicle; for−2.0 h< time< 0 h, the primary PM
was characterized; for time> 0 h, the UV lights were on and pho-
tooxidation generated SOA. The slight discontinuity at aboutt = 0 h
for the uncorrected BC is an artifact of the Aethalometer® tape ad-
vance.

of photooxidation, which generated an OH exposure of 1–
2× 107 molecules h cm−3. This corresponds to 3.5–7 h of
equivalent atmospheric aging at typical summertime OH
concentrations of 3× 106 molecules cm−3. There was no ev-
idence that SOA production was completed at the end of the
experiment (after 3 h of oxidation). In some experiments the
SOA production did slow as the OH levels decreased (due
to consumption of the HONO by photolysis), but this did
not appear to be related to availability of SOA precursors.

Measurements downwind of New England suggest SOA pro-
duction continues for about 48 h at OH concentrations of
3× 106 molecules cm−3 (de Gouw et al., 2005); if this ap-
plies to diesel exhaust, the data shown in Fig. 3 may substan-
tially underestimate the SOA formation potential of diesel
emissions.

The most striking feature in Fig. 3 is the very low BC and
POA emissions and SOA formation for the catalyzed-DPF-
equipped vehicles (D1 and D2). For these experiments, the
chamber measurements were all below the detection limit
(∼10 mg kg-fuel−1).

There were substantial primary PM emissions and SOA
formation in every experiment performed with a non-DPF-
equipped vehicle. Furthermore, the differences between the
non-DPF-equipped vehicles – both the MDDVs and the HD-
DVs – were relatively modest compared to the differences
between non-DPF- and DPF-equipped vehicles. For exam-
ple, D3 (“D3 avg UDDS” in Fig. 3) emitted roughly one-
half and one-third as much POA as D5.3 and the DOC-
equipped MDDV (“2002 DOC”) measured by Chirico et
al. (2010), respectively (50 mg kg-fuel−1 vs. 80 mg kg-fuel−1

and 130 mg kg-fuel−1), and BC levels were roughly compa-
rable across these same experiments. Although qualitatively
similar, BC and POA emissions and SOA formation for D4
differed somewhat more from the other non-DPF-equipped
vehicles. However, this sort of vehicle-to-vehicle variability
in vehicle emission rates is not surprising. May et al. (2014)
compare the primary emissions data from these vehicles to
the literature.

Many previous studies have reported > 90 % reductions
in primary PM from both heavy-duty (Herner et al., 2009;
Millstein and Harley, 2010; Ratcliff et al., 2010) and light-
duty (Ntziachristos et al., 2005; Matti Maricq, 2007) DPF-
equipped diesel engines. However, comparatively little has
been published on the effect of aftertreatment on SOA forma-
tion. Figure 3 indicates that DOCs reduce SOA – more SOA
was generated from MDDV and LDDV experiments with-
out a DOC (D5.3 and 2000) than experiments with DOCs
(D4.1 and 2002). We anticipate that the observed SOA reduc-
tion would mirror the reduction in NMOG emissions, since
a subset of these emissions are SOA precursors. However,
Fig. 4a indicates that the total NMOG emissions for D4.1
(∼1000 mg kg-fuel−1, DOC) are slightly greater than those
of D5.3 (∼700 mg kg-fuel−1, no DOC). This suggests that
either the DOC was malfunctioning in D4 or the higher SOA
production of D5.3 could be due to differences in the com-
position of the emissions. Unfortunately, a measurement or
reporting error from either the GC-MS or the flame ioniza-
tion detector (FID) appears to have occurred during the D4.1
experiment because the sum of the masses of all the speci-
ated compounds for D4.1 is greater than the total NMOG
measured by FID. This technical difficulty may explain why
the DOC-equipped vehicle’s (D4’s) NMOG was greater than
the NMOG from the vehicle without a DOC (D5).
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The primary emissions and SOA formation from the DOC-
equipped MDDV (D4) were much higher than from the two
catalyzed-DPF-equipped HDDVs (D1 and D2). In compari-
son, Chirico et al. (2010) and Samy and Zielinska (2010) re-
port very low SOA formation from DOC-equipped engines.
This suggests that the DOC on D4 might have been compro-
mised; Chirico et al. (2010) also measured substantial SOA
formation from a vehicle with a compromised DOC. The two
DPF-equipped HDDVs are relatively new, well maintained
and low mileage (Table 1). The DOC-equipped MDDV was
recruited from the California in-use fleet; it was older with
higher mileage than the two DPF-equipped HDDVs (Ta-
ble 1). The results from Chirico et al. (2010) and this work
underscore the potential effectiveness of catalyzed aftertreat-
ment at reducing SOA formation from diesel vehicles, but
also raise concerns about the durability of these systems.

For comparison, average BC and POA emissions and SOA
production data from experiments with 15 different light-
duty gasoline vehicles (MY1987 through MY2011) are in-
cluded at the right side of Fig. 3 (Gordon et al., 2013a). As
expected, BC emissions from any of the non-DPF-equipped
diesels are much higher than for the gasoline vehicles. SOA
formation from the DOC-equipped MDDV appears to be
roughly comparable to that from the gasoline vehicles. SOA
formation per mass of fuel burned from the non-DOC-
equipped diesel vehicles was greater than from the gasoline
vehicles.

3.1 Impact of driving cycle

3.1.1 Creep + idle vs. UDDS

The low-engine-load creep + idle test cycle (“D3.5 creep”
in Fig. 3) reduced BC emissions, but substantially increased
SOA production relative to the “D3” tests using the UDDS
cycle. The higher SOA formation was presumably linked to
the factor-of-5 increase in NMOG emissions for the creep
+ idle experiment (Fig. 4). The reduction in BC at low load
was consistent with many other studies (Presto et al., 2011;
Lipsky and Robinson, 2006; Nakao et al., 2011) that have
shown that the OC / EC ratio is inversely related to engine
load.

No creep + idle smog chamber experiments were per-
formed with DPF-equipped vehicles. However the NMOG
emissions from these vehicles were much higher during
creep + idle than UDDS tests (3.5 and 0.13 g kg-fuel−1 for
D2 and D1, respectively). In particular the D2 creep + idle
NMOG emissions are more than half as large as those from
the non-DPF-equipped D3 during creep + idle. Therefore,
there may be significant SOA production under low-load
driving conditions for DPF-equipped vehicles. The elevated
NMOG emissions during the creep + idle test are likely due
to lower exhaust temperatures, which reduce the efficacy of
the catalyst.

3.1.2 DPF Regeneration

Figure 5 shows that POA emissions per mass of fuel con-
sumed during active regeneration were comparable to those
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measured during UDDS tests with the non-DPF-equipped
HDDV (D3), but BC emissions during regeneration were
much lower (0.02 vs. 0.58 g kg-fuel−1 for the D1 and D3,
respectively). A distinguishing feature of regeneration (com-
pared to UDDS or creep) was the sulfate emissions (0.2 to
0.4 g kg-fuel−1), which has also been reported by other stud-
ies (Vaaraslahti et al., 2004; Dwyer et al., 2010; Bergmann et
al., 2009; Guo et al., 2003).

Figure 5 shows that there was substantial SOA formation
from dilute active regeneration emissions. D2 emitted a sig-
nificant amount of NMOG (∼101 mg kg-fuel−1) during re-
generation. Although D2’s NMOG regeneration emissions
were an order of magnitude lower than UDDS emissions
from the non-DPF HDDVs (e.g., D3 average = 1260 mg kg-
fuel−1), the amount of SOA produced during D2’s regenera-
tion was 2–3 times greater than what is produced by D3 dur-
ing UDDS. A smaller amount (8 mg kg-fuel−1) of NMOG
was emitted by D1 during regeneration. Incomplete combus-

tion of the fuel used to initiate active regeneration likely con-
tributes to the SOA formation.

Given the significant primary PM emissions and SOA pro-
duction from a single, active regeneration event (Fig. 5), it
is important to estimate their impact on the overall contri-
bution of DPF-equipped HDDV to ambient PM. This cal-
culation depends on the frequency of active regeneration
for the in-use fleet – a difficult metric to quantify (it de-
pends on highly variable engine and environmental con-
ditions as well as proprietary emission control algorithms,
among other factors). Based on discussions with a senior
industry scientist (T. V. Johnson, personal communication,
2013), we estimate active regeneration frequencies of once
per 2000 miles (3200 km) for HDDVs manufactured during
2007–2009 and once per 10 000 miles (16 000 km) for HD-
DVs manufactured during 2010–2011. Combining our exper-
imentally derived emission and SOA production factors for
both active regeneration and for normal driving with these

www.atmos-chem-phys.net/14/4643/2014/ Atmos. Chem. Phys., 14, 4643–4659, 2014



4652 T. D. Gordon et al.: Secondary organic aerosol production from diesel vehicle exhaust

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

 

   

g 
kg

-fu
el

-1

L

L L

M

M M

UDDS

regen

regen

SOA

SO4

POA

BC

D1.15 D2.18D1.14D1.11 D2.7 D2.12

DPF+DOC+SCR DPF+DOC no AT

D3 avg

UDDS

UDDS

Fig. 5. Primary PM emissions (BC, sulfate and POA) and SOA
formed during active diesel particulate filter (DPF) regeneration
(“regen”). As a benchmark, the median primary emissions and SOA
production for control (UDDS, nonregeneration) experiments are
also shown. For each vehicle the two control experiments and the
regeneration used the same fuel (L = low aromatic and M = mid-
aromatic). On the far right are the average values (error bars are
±1σ) for all the UDDS tests with a non-DPF-equipped HDDV (D3).
Error bars for the regeneration experiments denote the SOA range
obtained by applying theω = 0 andω = 1 wall-loss correction ap-
proaches.

regeneration frequency estimates, we calculated the total PM
(primary + SOA) contribution for the three classes of HD-
DVs. Taking the 2006 HDDV (D3) as the baseline, we es-
timated that the two DPF-equipped vehicles (D1 and D2)
only contribute 0.1–1.5 % as much PM mass (BC + POA +
SOA + SO4) as the non-DPF-equipped vehicle. Therefore,
active regeneration does not significantly degrade the overall
performance of the DPF-equipped vehicle. Although Guo et
al. (2003) did not consider SOA production, their estimate of
DPF trapping efficiency (> 97 % of PM by mass) is compa-
rable to our estimate that DPFs reduce the total PM (primary
+ SOA) contribution by 98.5–99.9 % relative to a non-DPF-
equipped vehicle.

In addition to periodic, discrete active regenerations, soot
is also eliminated from the DPF through passive regen-
eration. No fuel is injected upstream of the DPF during
passive regeneration; instead the soot oxidizes when high-
temperature exhaust gases heat the DPF (typically during
high-engine-load operations). While passive DPF regener-
ation is preferred over active regeneration (due to lower
fuel consumption and reduced thermomechanical stress on
the DPF substrate), many in-use diesel vehicles utilize ac-
tive regeneration to some extent. For example, buses, refuse
collection trucks, city delivery trucks and other non-long-
haul diesel vehicles depend more heavily on active regen-
eration due to lower engine load and/or more frequent stop-
ping/idling. The concomitant lower exhaust gas temperatures

during these modes of operation necessitate more frequent
active regeneration. Barring an aftertreatment breakthrough,
diesel vehicles will continue to depend on active regenera-
tion, although the frequency of active regenerations has de-
creased substantially for newer vehicles (T. V. Johnson, per-
sonal communication, 2013; Warner et al., 2010).

In our experiments, an active regeneration was performed
as part of the pre-test and fuel switching protocols; thus,
these vehicules underwent active regeneration more fre-
quently than would occur under normal in-use conditions.
Therefore, during these tests the DPFs likely contained less
soot than they would under normal operating conditions,
which could affect the passive regeneration and the emissions
of both primary PM and SOA precursors. For example, more
frequent active regenerations slightly reduce DPF trapping
efficiency. During normal operation soot accumulates on the
porous DPF substrate walls and provides an additional filtra-
tion layer, thereby increasing the∼90 % filtration efficiency
of a freshly regenerated DPF to∼99 % for one containing
some soot (Yang et al., 2009). It is not clear what impact this
would have on SOA precursor emissions.

3.1.3 Impacts of fuel chemistry and experimental
repeatability

Figure 4 presents the gas- and particle-phase data broken
down by differences in fuel chemistry and expanded to
show experimental repeatability. (Experiments with the two
DPF-equipped HDDVs are not differentiated by fuel be-
cause emissions in every case were below the detection limit
regardless of fuel type.) For example, instead of a single
stacked bar for vehicle D5 (MDDV, no AT) as in Fig. 3, there
are three stacked bars in Fig. 4a, corresponding to the three
experiments with this vehicle, including two different fuels
and a duplicate experiment. Figure 4b shows the NMOG
emissions separated into speciated SOA precursors, speci-
ated non-SOA precursors and unspeciated (see Table S6 for a
complete list of NMOG species, including SOA precursors).
Speciated SOA precursors are aromatics and mid-weight (C9
to C12) alkanes. Unspeciated emissions are defined as the dif-
ference between the total NMOG emissions and the sum of
the speciated emissions. The unspeciated emissions are pre-
sumably a complex mixture of branched and cyclic isomers
that were not separated by one-dimensional gas chromatog-
raphy.

Although the aromatic content of the fuel and the emis-
sions were positively correlated (see Fig. S4 in the Supple-
ment), Fig. 4a, b indicate no systematic effect of fuel aro-
maticity on POA emissions or SOA production. EC emis-
sions from the five experiments with D3 were also tightly
grouped with no distinguishable trend based on fuel type (av-
erage± 1σ shown in Fig. 3; individual values not shown).
Furthermore, the relative amounts of NMOG (Fig. 4b) in
the different broad categories (speciated SOA precursor,
speciated non-SOA precursor and unspeciated) are also
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identical for the D3 experiments (UDDS cycle) regardless
of fuel type.

One of the MDDVs (D5) was tested with both commercial
ULSD and B100 soy-based biodiesel. Although there was
no effect on POA emissions, EC emissions were reduced by
about a factor of 2 with B100 (data not shown), which is
consistent with many studies (Lapuerta et al., 2008, and ref-
erences therein) that report a 40–75 % reduction in (primary)
PM emissions when diesel is replaced with biodiesel. More
data are required to determine conclusively biodiesel’s im-
pact on SOA formation. For the base experiment (VOC / NOx
∼3 ppbC ppb−1 NOx), there does not appear to be a signifi-
cant effect. When the biodiesel experiment was repeated at a
significantly lower VOC / NOx ratio (0.7 vs. 3.8 ppbC ppb−1

NOx), the SOA production was reduced by more than a fac-
tor of 2 (experiments D5.2 and D5.1, respectively). This may
be caused by high-NOx conditions causing NO and NO2 to
react with organoperoxy radicals (RO2), which changes the
distribution (and volatilities) of oxidation products, reducing
SOA yields. Other researchers have shown that SOA produc-
tion is reduced in single-component smog chamber studies
when VOC / NOx is reduced (Presto et al., 2005a; Song et
al., 2005).

Figure 4 demonstrates good repeatability of these exper-
iments, especially with the HDDVs. The duplicate MDDV
experiments labeled “D” produced comparable amounts of
SOA and NMOG, but their POA emissions differed. POA
emissions from the two MDDV experiments labeled “BD”
were nearly identical. The moderate difference in SOA pro-
duction for these two experiments is likely due to the fact that
they were not true duplicates: the experiment with the lower
SOA was stopped after only 1.5 h of photooxidation rather
than 3 h for the other BD experiment.

3.1.4 SOA mass closure

To investigate the relationship between NMOG emissions
and SOA production, we calculated an effective SOA yield,
defined as the ratio of the measured SOA mass after 3 h of
photooxidation to the estimated mass of reacted SOA pre-
cursors. This is a standard measure of SOA production in
smog chamber studies. It is the conversion efficiency from
precursor to SOA mass. In this work, we use the term “effec-
tive” yield because diesel exhaust is comprised of a complex
mix of species of which only a subset was quantified by the
GC analysis. Therefore, we can only estimate the mass of
reacted organic precursors. The reacted precursor mass was
calculated from the initial concentration of each species (in-
ferred from the measurements in the CVS), the OH exposure
in the chamber and the reaction rate for the species with OH.
The speciated SOA precursors included in this analysis were
single-ring aromatics (C6 to C12) and mid-weight VOCs (C9
to C12) (see Table S4 in the Supplement). These are the com-
pounds that are traditionally included in SOA models (Heald
et al., 2005; Hennigan et al., 2011; Miracolo et al., 2010,

0%

20%

40%

60%

pre-LEV
1987-90

HDDV (D3)
2006

LEV-2
2007-2011

vaporized
diesel

LEV-1
1996-2003

gasoline vehicles

UDDS

Eff
ec

tiv
e 

SO
A 

Yi
el

d

1%

10%

100%

H M M L L M
Creep

Eff
ec

tiv
e 

SO
A 

Yi
el

d

speciated VOC SOA-precursors
speciated VOC SOA-precursors + unspeciated VOCs

speciated VOC SOA-precursors + unspeciated VOCs

(a)

(b)
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DVs (D1 and D2) are not shown because SOA production from the
emissions of these vehicles was below the detection limit (Fig. 4).
The error bars represent the standard deviations of the medians.

2011; Vutukuru et al., 2006). For the HDDV experiments
unspeciated NMOG with Kovats indices≥ 800 (i.e., higher
molecular weight than n-octane) were also assumed to be
SOA precursors; NMOG with Kovats indices < 800 were as-
sumed to be nonprecursors (see Table S4 in the Supplement).

Figure 6a presents the effective SOA yield estimates
for the non-DPF-equipped HDDV experiments with low-,
medium- and high-aromaticity diesel fuel. If only tradi-
tional SOA precursors are included in the analysis (C6
to C12 single-ring aromatics and mid-weight alkanes and
other species with Kovats≥ 800), then the estimated yields
are 20–75 % (the wide range is likely due in part to
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experiment-to-experiment differences in chamber PM lev-
els which alter gas-particle partitioning). This is higher than
yields from most single-compound smog chamber studies,
which are generally 5 to 20 % across a wide range of ex-
perimental conditions (Chan et al., 2009; Hildebrandt et al.,
2009; Ng et al., 2007; Presto et al., 2010; Tkacik et al., 2012).
Odum et al. (1997) reported yields from whole gasoline va-
pors – a more complex system (and therefore presumably
closer to combustion emissions) than single compounds –
that range from about 2 to 5 % at (COA ≈ 10 µg m−3) (Odum
et al., 1997). Compared to those studies, the yields required
to explain the measured SOA production with only speci-
ated SOA precursors seem unrealistically high, indicating
that additional precursors are required for mass closure. Pre-
vious studies have also demonstrated that traditional SOA
precursors do not explain the amount of SOA formed from
the photooxidation of combustion products of various fuels,
including wood, diesel and jet fuel (Weitkamp et al., 2007;
Grieshop et al., 2009; Miracolo et al., 2011). Chemical trans-
port models that only account for traditional, speciated SOA
precursors also systematically underpredict the ambient SOA
levels (Heald et al., 2005; Volkamer et al., 2006; de Gouw et
al., 2005).

A challenge to performing SOA closure studies is that not
all of the NMOG can be speciated using the traditional one-
dimensional gas chromatography employed here (Schauer et
al., 1999). Figure 4b indicates that in all but one experiment a
significant fraction (on average∼30 %) of the NMOG emis-
sions that could not be speciated. This is similar to measure-
ments by Schauer et al. (1999). The unspeciated emissions
are presumably high-molecular-weight alkanes, and the ma-
jority of these are expected to be intermediate-volatility or-
ganic compounds (IVOCs) (Robinson et al., 2007). To in-
clude them in the effective yield analysis, we assume that the
unspeciated mass reacts at 2× 10−11 cm3 molecules−1 s−1,
which is representative of published kinetic data for large sat-
urated alkanes (Atkinson and Arey, 2003).

Figure 6a indicates that effective yields range from 4 to
19 % when both the unspeciated NMOG and the speciated
SOA precursors are included in the analysis. This range is
plausible given data from single-component chamber exper-
iments (Hildebrandt et al., 2009; Odum et al., 1996; Presto
et al., 2010). This analysis indicates that more than half of
the SOA formed in dilute diesel exhaust likely comes from
unspeciated emissions that are frequently not correctly ac-
counted for in chemical transport models. This issue is dis-
cussed in more detail in an upcoming manuscript (Jathar et
al., 2013b).

Figure 6b compares the effective yields calculated for the
HDDVs without a DPF (D3, UDDS only) to similar es-
timates for 14 different gasoline vehicles (Gordon et al.,
2013a) and to vaporized diesel fuel (Jathar et al., 2013a).
The median effective yield for dilute diesel exhaust (∼10 %
if S/IVOCs and unspeciated compounds are included) is

roughly equal to vaporized diesel fuel. It also falls between
the medians for pre-LEV and LEV-1 gasoline vehicles.

The effective yield estimates plotted in Fig. 6b are only a
relative measure of SOA production. The ultimate contribu-
tion of a vehicle’s emissions depends on both the yield and
precursor emission rate. Figure 3 shows that the net effect of
both of these factors is that the absolute amount of SOA pro-
duction for the D3 HDDV operated over the UDDS cycle is
roughly 60 % larger than the median gasoline vehicle tested
by Gordon et al. (2013a).

It is important to note that all of the HDDV experiments
discussed here were “hot start” (engine was warmed prior
to test cycle), whereas the gasoline experiments shown in
Fig. 6b were all “cold start.” For gasoline vehicles, hot-
start emission produce significantly less SOA than cold-start
emissions (Gordon et al., 2013a). Thus, it is possible that
this experimental difference negatively biases the HDDV
SOA data relative to the gasoline data. However, it is unclear
whether differences in engine/catalyst temperature have the
same effect (in magnitude or direction) on the effective SOA
yield for gasoline and diesel vehicles. Furthermore, all of the
MDDV experiments were cold start. Figure 3 indicates that
there was not a significant difference in the mass of SOA pro-
duced during the cold-start MDDV and the hot-start UDDS
with D3. However, additional research is needed to better
understand SOA production from cold-start versus hot-start
diesel vehicle emissions.

4 Conclusions

Smog chamber experiments were conducted to investigate
SOA formation from dilute emissions from two medium-
duty and three heavy-duty diesel vehicles. While the num-
ber of vehicles tested in this study was limited, the vehicles
were specifically chosen to investigate the range of current
exhaust aftertreatment technologies. The primary PM results
are consistent with many previous studies (May et al., 2014).
In particular, the conclusion that the two DPF-equipped ve-
hicles emitted essentially no primary PM (BC or organics)
during high-speed and transient operations is congruent with
numerous independent reports (Chirico et al., 2010; Guo et
al., 2003; Herner et al., 2011; Liu et al., 2008). This study
extended that previous work to demonstrate that SOA pro-
duction from these emissions was also very low (below the
detection limit). Therefore, catalyzed DPFs appear to effec-
tively control both primary and secondary PM from diesel
vehicles.

While these experiments did not test the same vehicle with
and without a DPF, there is strong evidence that our conclu-
sions are not limited by this apparent source of uncertainty.
There is a truly dramatic difference between the emissions
(PM, NMOG, etc.) from those vehicles with a DPF and those
without a DPF. For example, the NMOG emissions from the
catalyzed-DPF-equipped diesels were 2 orders of magnitude
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lower than vehicles without aftertreatment. It is highly un-
likely that these reductions could be achieved without af-
tertreatment, for, if this were possible, engine manufacturers
would not be adding DPFs to meet current regulations. In
other words, DPF- and non-DPF-equipped vehicles operate
in totally distinct emissions regimes. This hypothesis is sup-
ported by comparisons of our primary emissions data with
the broader literature (May et al., 2014).

The impact of DPF regeneration on PM production is not
well understood, and depends on actual in-use conditions. In
this study, primary PM emissions as well as SOA and sul-
fate production from DPF-equipped vehicles were observed
during active regeneration. Further investigation is needed to
refine estimates of the PM contribution from passive and ac-
tive regeneration, but our results support the conclusion that
active DPF regeneration contributes relatively little PM over
a vehicle’s operation cycle (normal driving + regeneration),
even when SOA production is included.

Substantial SOA was formed when emissions from
MDDVs and HDDVs not equipped with DPFs were pho-
tooxidized in the smog chamber for 3 h – with the emissions
from some vehicles generating twice as much SOA as POA.
Although SOA production from diesel- and biodiesel-fueled
vehicles without a DPF was significant on an absolute ba-
sis, after 3 h of photooxidation the net PM (primary + sec-
ondary) levels in the chamber were still dominated by the
primary emissions because of the high levels of BC. How-
ever, BC’s dominant role in PM emissions/production from
diesel vehicles could be due in part to the limited OH expo-
sure and/or conservative approach we have taken in estimat-
ing SOA production. As previously discussed, our SOA esti-
mates do not include the loss of organic vapors to the cham-
ber walls. Kokkola et al. (2014) suggest that ambient SOA
mass production may be underpredicted in chamber experi-
ments by a factor of 4 due to the loss of low-volatility vapors
to the walls (Kokkola et al., 2014). Furthermore, Matsunaga
and Ziemann (2010) show that for a range of gas-phase com-
pounds relevant to our study the OC in the chamber will re-
side overwhelmingly in the chamber walls (Matsunaga and
Ziemann, 2010). Absorption of SOA precursors by the cham-
ber walls would imply that the effective SOA yields in Fig. 6
are lower limits on the yields expected in the ambient atmo-
sphere and that SOA may constitute a larger fraction of total
PM.

While net PM and POA were comparable for slow/idle
operations (i.e., the creep + idle driving cycle) and high-
speed urban operation (i.e., the UDDS cycle), SOA produc-
tion from slow/idle operation was 3–4 times larger than SOA
production from the UDDS cycle. This appears to be due to
the much higher NMOG emissions during the slow/idle op-
eration. Reduced BC emissions partially offset the increased
SOA production during the slow/idle tests. For one of the
MDDVs, switching from ULSD to B100 biodiesel reduced
BC substantially, but POA emissions and SOA production
were unchanged.

For the HDDVs without a DPF, an effective SOA yield was
calculated using measurements of the speciated and unspeci-
ated nonmethane organic gases. The SOA could not be ex-
plained by speciated VOCs (i.e., traditional SOA precursors)
alone. We hypothesize that unspeciated organics (∼30 % of
the NMOG emissions) are important, additional SOA precur-
sors. If these emissions are included in the analysis (in addi-
tion to speciated, known SOA precursors), then the estimated
effective SOA yield ranged from 4 to 19 %, comparable to the
yield of single-ring aromatics and larger alkanes (Donahue et
al., 2005; Hildebrandt et al., 2009; Odum et al., 1996; Presto
et al., 2010). The variability in yield estimates is due, in part,
to experiment-to-experiment differences in chamber OH and
PM levels.

The aromatic content of the three different test fuels used
in HDDV tests had no effect on the amount of primary PM
emissions or SOA production. In contrast, Odum et al. (1997)
found that fuel aromaticity accurately predicted SOA yields
when vaporized gasoline was photooxidized (Odum et al.,
1997). The difference between our results and those of Odum
et al. (1997) underscores the strong distinction between pho-
tooxidation of actual vehicle emissions versus photooxida-
tion of vaporized fuel. Our results suggest that reformulating
diesel fuel by altering aromatic content alone is not likely
to have a significant impact on either primary or secondary
PM. Driving cycle, on the other hand, had a large impact on
SOA production. The large amounts of SOA formed from
slow/idle emissions means that efforts to limit truck idling
may be a more effective approach than fuel reformulation to
limit the contribution of diesel emissions to ambient PM.

Throughout this paper reported SOA production was based
on AMS measurements. If SMPS-derived estimates were
used instead, the clear distinction between vehicles with and
without aftertreatment becomes even more pronounced. This
is due to the fact that the SMPS-derived estimates of SOA
are approximately a factor of 3 higher than AMS-derived
SOA estimates for the non-DPF-equipped vehicles but re-
main zero for the DPF equipped vehicles whether calculated
from AMS or SMPS data. In addition, SOA yields would in-
crease by a similar amount to a median of∼27 %, and the
ratio of SOAcreep + idle/ SOAUDDS would be∼10 rather than
3–4. Using SMPS data rather than AMS data does not change
the conclusion that fuel chemistry has little or no effect on
primary PM emissions or SOA formation.

Supplementary material related to this article is
available online athttp://www.atmos-chem-phys.net/14/
4643/2014/acp-14-4643-2014-supplement.pdf.
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