55 research outputs found

    Effectiveness of citrate buffer-fluoride mixture in Terumo tubes as an inhibitor of in vitro glycolysis

    Get PDF
    Introduction: Glycolysis affects glucose determination in vitro. The placement of sample tubes in ice-water slurry with plasma separation within 30 minutes is recommended, or alternatively the use of a glycolysis inhibitor. The aim of our two-steps study was to evaluate which Terumo tube is best for glucose determination in routine clinical setting. Materials and methods: In the first study, blood from 100 volunteers was collected into lithium heparin (LH), NaF/Na heparin (FH) and NaF/citrate buffer/Na2EDTA (FC-Mixture) tubes. LH sample was treated as recommended and considered as reference, while FH and FC-Mixture samples were aliquoted, maintained at room temperature (RT) for 1, 2 and 4 hours; centrifuged and plasma analysed in triplicate. In the second study, samples from 375 volunteers were collected in LH, FH and FC-Mixture tubes and held at RT before centrifugation from 10 to 340 minutes, depending on each laboratory practice. Samples were analysed in one analytical run. Results: In the first study, FH glucose concentrations were 5.15 ± 0.66 mmol/L, 5.05 ± 0.65 mmol/L and 5.00 ± 0.65 mmol/L (P < 0.001) in tubes stored at RT for 1, 2 and 4 hours, respectively. Mean biases in all time points exceeded the analytical goal for desirable bias based on biological variation criteria. FC-Mixture glucose concentrations were 5.48 ± 0.65 mmol/L, 5.46 ± 0.6 mmol/L and 5.46 ± 0.64 mmol/L in tubes stored at RT for 1, 2 and 4 hours, respectively. Mean biases for FC-Mixture glucose in all time points reached optimal analytical goals. In the second study, the biases for LH and FH glucose compared to reference FC-Mixture glucose exceeded the preset analytical goals, regardless of the blood collection to centrifugation time interval. Conclusions: FC-mixture tubes glucose concentrations were preserved up to 4h storage at RT. We confirmed that NaF alone does not allow immediate glycolysis inhibition in real life pre-centrifugation storage conditions (up to 340 minutes). FC-Mixture should be used exclusively for glucose determination in laboratories unable to implement the recommended blood samples’ treatment

    The Association between Single Nucleotide Polymorphisms, including miR-499a Genetic Variants, and Dyslipidemia in Subjects Treated with Pharmacological or Phytochemical Lipid-Lowering Agents

    Get PDF
    none12noDisorders of lipoprotein metabolism are among the major risk factors for cardiovascular disease (CVD) development. Single nucleotide polymorphisms (SNPs) have been associated with the individual variability in blood lipid profile and response to lipid-lowering treatments. Here, we genotyped 34 selected SNPs located in coding genes related to lipid metabolism, inflammation, coagulation, and a polymorphism in the MIR499 gene-a microRNA previously linked to CVD-to evaluate the association with lipid trait in subjects with moderate dyslipidemia not on lipid-lowering treatment (Treatment-naĂŻve (TN) cohort, n = 125) and in patients treated with statins (STAT cohort, n = 302). We also explored the association between SNPs and the effect of a novel phytochemical lipid-lowering treatment in the TN cohort. We found that 6 SNPs (in the MIR499, TNFA, CETP, SOD2, and VEGFA genes) were associated with lipid traits in the TN cohort, while no association was found with the response to twelve-week phytochemical treatment. In the STAT cohort, nine SNPs (in the MIR499, CETP, CYP2C9, IL6, ABCC2, PON1, IL10, and VEGFA genes) were associated with lipid traits, three of which were in common with the TN cohort. Interestingly, in both cohorts, the presence of the rs3746444 MIR499 SNP was associated with a more favorable blood lipid profile. Our findings could add information to better understand the individual genetic variability in maintaining a low atherogenic lipid profile and the response to different lipid-lowering therapies.openGiuliani, Angelica; Montesanto, Alberto; Matacchione, Giulia; Graciotti, Laura; Ramini, Deborah; Protic, Olga; Galeazzi, Roberta; Antonicelli, Roberto; Tortato, Elena; Bonfigli, Anna Rita; Sabbatinelli, Jacopo; Olivieri, FabiolaGiuliani, Angelica; Montesanto, Alberto; Matacchione, Giulia; Graciotti, Laura; Ramini, Deborah; Protic, Olga; Galeazzi, Roberta; Antonicelli, Roberto; Tortato, Elena; Bonfigli, Anna Rita; Sabbatinelli, Jacopo; Olivieri, Fabiol

    Randomized, Double-Blind, Placebo-Controlled Trial to Test the Effects of a Nutraceutical Combination Monacolin K-Free on the Lipid and Inflammatory Profile of Subjects with Hypercholesterolemia

    Get PDF
    Background: Nutraceutical combinations (NCs) against hypercholesterolemia are increasing in the marketplace. However, the availability of NCs without monacolin K is scarce even though the statin-intolerant population needs it. Methods: This study is a parallel-group, randomized, placebo-controlled, double-blind trial. We evaluated the effects of the NC containing phytosterols, bergamot, olive fruits, and vitamin K2 on lipid profile and inflammatory biomarkers in 118 subjects (mean age ± SD, 57.9 ± 8.8 years; 49 men and 69 women) with hypercholesterolemia (mean total cholesterol ± SD, 227.4 ± 20.8 mg/dL) without clinical history of cardiovascular diseases. At baseline and 6 and 12 weeks of treatment, we evaluated lipid profile (total, LDL and HDL cholesterol, and triglycerides), safety (liver, kidney, and muscle parameters), and inflammatory biomarkers such as hs-CRP, leukocytes, interleukin-32, and interleukin-38 and inflammatory-microRNAs (miRs) miR-21, miR-126, and miR-146a. Results: Compared to the placebo, at 6 and 12 weeks, NC did not significantly reduce total cholesterol (p = 0.083), LDL cholesterol (p = 0.150), and triglycerides (p = 0.822). No changes were found in hs-CRP (p = 0.179), interleukin-32 (p = 0.587), interleukin-38 (p = 0.930), miR-21 (p = 0.275), miR-126 (p = 0.718), miR-146a (p = 0.206), myoglobin (p = 0.164), and creatine kinase (p = 0.376). Among the two reported, only one adverse event was probably related to the nutraceutical treatment. Conclusions: The evaluated nutraceutical combination did not change serum lipid profile and inflammatory parameters, at least not with the daily dose applied in the present study

    Routine laboratory parameters, including complete blood count, predict COVID-19 in-hospital mortality in geriatric patients

    Get PDF
    To reduce the mortality of COVID-19 older patients, clear criteria to predict in-hospital mortality are urgently needed. Here, we aimed to evaluate the performance of selected routine laboratory biomarkers in improving the prediction of in-hospital mortality in 641 consecutive COVID-19 geriatric patients (mean age 86.6±6.8) who were hospitalized at the INRCA hospital (Ancona, Italy). Thirty-four percent of the enrolled patients were deceased during the in-hospital stay. The percentage of severely frail patients, assessed with the Clinical Frailty Scale, was significantly increased in deceased patients compared to the survived ones. The age-adjusted Charlson comorbidity index (CCI) score was not significantly associated with increased risk of death. Among the routine parameters, neutrophilia, eosinopenia, lymphopenia, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein, procalcitonin, IL-6, and NT-proBNP showed the highest predictive values. The fully adjusted Cox regressions models confirmed that high neutrophil %, NLR, derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), and low lymphocyte count, eosinophil %, and lymphocyte-to-monocyte ratio (LMR) were the best predictors of in-hospital mortality, independently from age, gender, and other potential confounders. Overall, our results strongly support the use of routine parameters, including complete blood count, in geriatric patients to predict COVID-19 in-hospital mortality, independent from baseline comorbidities and frailty

    N-Glycomic changes in serum proteins in type 2 diabetes mellitus correlate with complications and with metabolic syndrome parameters

    Get PDF
    Background: Glycosylation, i.e the enzymatic addition of oligosaccharides (or glycans) to proteins and lipids, known as glycosylation, is one of the most common co-/posttranslational modifications of proteins. Many important biological roles of glycoproteins are modulated by N-linked oligosaccharides. As glucose levels can affect the pathways leading to glycosylation of proteins, we investigated whether metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM), pathological conditions characterized by altered glucose levels, are associated with specific modifications in serum N-glycome. Methods: We enrolled in the study 562 patients with Type 2 Diabetes Mellitus (T2DM) (mean age 65.6 +/- 8.2 years) and 599 healthy control subjects (CTRs) (mean age, 58.5 +/- 12.4 years). N-glycome was evaluated in serum glycoproteins. Results: We found significant changes in N-glycan composition in the sera of T2DM patients. In particular, alpha(1,6)-linked arm monogalactosylated, core-fucosylated diantennary N-glycans (NG1(6)A2F) were significantly reduced in T2DM compared with CTR subjects. Importantly, they were equally reduced in diabetic patients with and without complications (P<0.001) compared with CTRs. Macro vascular-complications were found to be related with decreased levels of NG1(6) A2F. In addition, NG1(6) A2F and NG1(3) A2F, identifying, respectively, monogalactosylated N-glycans with alpha(1,6)- and alpha(1,3)-antennary galactosylation, resulted strongly correlated with most MS parameters. The plasmatic levels of these two glycans were lower in T2DM as compared to healthy controls, and even lower in patients with complications and MS, that is the extreme "unhealthy" phenotype (T2DM+ with MS). Conclusions: Imbalance of glycosyltransferases, glycosidases and sugar nucleotide donor levels is able to cause the structural changes evidenced by our findings. Serum N-glycan profiles are thus sensitive to the presence of diabetes and MS. Serum N-glycan levels could therefore provide a non-invasive alternative marker for T2DM and MS

    Circulating miR-320b and miR-483-5p levels are associated with COVID-19 in-hospital mortality

    Get PDF
    none28noThe stratification of mortality risk in COVID-19 patients remains extremely challenging for physicians, especially in older patients. Innovative minimally invasive molecular biomarkers are needed to improve the prediction of mortality risk and better customize patient management. In this study, aimed at identifying circulating miRNAs associated with the risk of COVID-19 in-hospital mortality, we analyzed serum samples of 12 COVID-19 patients by small RNA-seq and validated the findings in an independent cohort of 116 COVID-19 patients by qRT-PCR. Thirty-four significantly deregulated miRNAs, 25 downregulated and 9 upregulated in deceased COVID-19 patients compared to survivors, were identified in the discovery cohort. Based on the highest fold-changes and on the highest expression levels, 5 of these 34 miRNAs were selected for the analysis in the validation cohort. MiR-320b and miR-483-5p were confirmed to be significantly hyper-expressed in deceased patients compared to survived ones. Kaplan-Meier and Cox regression models, adjusted for relevant confounders, confirmed that patients with the 20% highest miR-320b and miR-483-5p serum levels had three-fold increased risk to die during in-hospital stay for COVID-19. In conclusion, high levels of circulating miR-320b and miR-483-5p can be useful as minimally invasive biomarkers to stratify older COVID-19 patients with an increased risk of in-hospital mortality.restrictedGiuliani, Angelica; Matacchione, Giulia; Ramini, Deborah; Di Rosa, Mirko; Bonfigli, Anna Rita; Sabbatinelli, Jacopo; MonsurrĂČ, Vladia; Recchioni, Rina; Marcheselli, Fiorella; Marchegiani, Francesca; Piacenza, Francesco; Cardelli, Maurizio; Galeazzi, Roberta; Pomponio, Giovanni; Ferrarini, Alessia; Gabrielli, Armando; Baroni, Silvia Svegliati; Moretti, Marco; Sarzani, Riccardo; Giordano, Piero; Cherubini, Antonio; Corsonello, Andrea; Antonicelli, Roberto; Procopio, Antonio Domenico; Ferracin, Manuela; BonafĂš, Massimiliano; Lattanzio, Fabrizia; Olivieri, FabiolaGiuliani, Angelica; Matacchione, Giulia; Ramini, Deborah; Di Rosa, Mirko; Bonfigli, Anna Rita; Sabbatinelli, Jacopo; MonsurrĂČ, Vladia; Recchioni, Rina; Marcheselli, Fiorella; Marchegiani, Francesca; Piacenza, Francesco; Cardelli, Maurizio; Galeazzi, Roberta; Pomponio, Giovanni; Ferrarini, Alessia; Gabrielli, Armando; Baroni, Silvia Svegliati; Moretti, Marco; Sarzani, Riccardo; Giordano, Piero; Cherubini, Antonio; Corsonello, Andrea; Antonicelli, Roberto; Procopio, Antonio Domenico; Ferracin, Manuela; BonafĂš, Massimiliano; Lattanzio, Fabrizia; Olivieri, Fabiol

    Mitochondrial DNA Backgrounds Might Modulate Diabetes Complications Rather than T2DM as a Whole

    Get PDF
    Mitochondrial dysfunction has been implicated in rare and common forms of type 2 diabetes (T2DM). Additionally, rare mitochondrial DNA (mtDNA) mutations have been shown to be causal for T2DM pathogenesis. So far, many studies have investigated the possibility that mtDNA variation might affect the risk of T2DM, however, when found, haplogroup association has been rarely replicated, even in related populations, possibly due to an inadequate level of haplogroup resolution. Effects of mtDNA variation on diabetes complications have also been proposed. However, additional studies evaluating the mitochondrial role on both T2DM and related complications are badly needed. To test the hypothesis of a mitochondrial genome effect on diabetes and its complications, we genotyped the mtDNAs of 466 T2DM patients and 438 controls from a regional population of central Italy (Marche). Based on the most updated mtDNA phylogeny, all 904 samples were classified into 57 different mitochondrial sub-haplogroups, thus reaching an unprecedented level of resolution. We then evaluated whether the susceptibility of developing T2DM or its complications differed among the identified haplogroups, considering also the potential effects of phenotypical and clinical variables. MtDNA backgrounds, even when based on a refined haplogroup classification, do not appear to play a role in developing T2DM despite a possible protective effect for the common European haplogroup H1, which harbors the G3010A transition in the MTRNR2 gene. In contrast, our data indicate that different mitochondrial haplogroups are significantly associated with an increased risk of specific diabetes complications: H (the most frequent European haplogroup) with retinopathy, H3 with neuropathy, U3 with nephropathy, and V with renal failure

    Design and methodology of the screening for CKD among older patients across Europe (SCOPE) study: A multicenter cohort observational study

    Get PDF
    Background: Decline of renal function is common in older persons and the prevalence of chronic kidney disease (CKD) is rising with ageing. CKD affects different outcomes relevant to older persons, additionally to morbidity and mortality which makes CKD a relevant health burden in this population. Still, accurate laboratory measurement of kidney function is under debate, since current creatinine-based equations have a certain degree of inaccuracy when used in the older population. The aims of the study are as follows: to assess kidney function in a cohort of 75+ older persons using existing methodologies for CKD screening; to investigate existing and innovative biomarkers of CKD in this cohort, and to align
    • 

    corecore