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Abstract

Background

Glycosylation, i.e the enzymatic addition of oligosaccharides (or glycans) to proteins and lip-

ids, known as glycosylation, is one of the most common co-/posttranslational modifications

of proteins. Many important biological roles of glycoproteins are modulated by N-linked oli-

gosaccharides. As glucose levels can affect the pathways leading to glycosylation of pro-

teins, we investigated whether metabolic syndrome (MS) and type 2 diabetes mellitus

(T2DM), pathological conditions characterized by altered glucose levels, are associated

with specific modifications in serum N-glycome.
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Methods

We enrolled in the study 562 patients with Type 2 Diabetes Mellitus (T2DM) (mean age 65.6

±8.2 years) and 599 healthy control subjects (CTRs) (mean age, 58.5±12.4 years). N-gly-

come was evaluated in serum glycoproteins.

Results

We found significant changes in N-glycan composition in the sera of T2DM patients. In par-

ticular, α(1,6)-linked arm monogalactosylated, core-fucosylated diantennary N-glycans

(NG1(6)A2F) were significantly reduced in T2DM compared with CTR subjects. Importantly,

they were equally reduced in diabetic patients with and without complications (P<0.001)

compared with CTRs. Macro vascular-complications were found to be related with de-

creased levels of NG1(6)A2F. In addition, NG1(6)A2F and NG1(3)A2F, identifying, respec-

tively, monogalactosylated N-glycans with α(1,6)- and α(1,3)-antennary galactosylation,

resulted strongly correlated with most MS parameters. The plasmatic levels of these two

glycans were lower in T2DM as compared to healthy controls, and even lower in patients

with complications and MS, that is the extreme “unhealthy” phenotype (T2DM+ with MS).

Conclusions

Imbalance of glycosyltransferases, glycosidases and sugar nucleotide donor levels is able

to cause the structural changes evidenced by our findings. Serum N-glycan profiles are

thus sensitive to the presence of diabetes and MS. Serum N-glycan levels could therefore

provide a non-invasive alternative marker for T2DM and MS.

Introduction
Type 2 diabetes mellitus (T2DM) is a complex and heterogeneous disease with a strong genetic
propensity when linked to a typical Western lifestyle, however, apart from this fact, its etiology
is still poorly understood. It is characterized by a chronic hyperglycemia, insulin resistance,
and a relative insulin secretion defect. Obesity and sedentary lifestyles correlate with T2DM
and its diffusion, however many aspect of involved biochemical pathways are still poorly
known [1]. Indeed there are many biochemical alterations other than hyperglycemia character-
izing T2DM that lack a physio-pathological mechanism. It is now clear that T2DM and other
condition with minor degrees of glucose intolerance commonly occur together with a collec-
tion of clinical and biochemical features, that have been called metabolic syndrome [2–4].

The term “metabolic syndrome” (MS) defines a cluster of components that reflect over nu-
trition, sedentary lifestyles and resultant excess adiposity. It melts together a cluster of cardio-
vascular risk factors whose core components are: impaired glucose metabolism, obesity,
dyslipidemia, and hypertension. MS is also associated with other co-morbidities, such as pro-
thrombotic state, proinflammatory state, nonalcoholic fatty liver disease and reproductive dis-
orders. The prevalence of the MS is growing to epidemic proportions all over the world [5],
both in the urbanized world and in developing nations. Although there are divergent criteria
for the identification of the MS [6,7] there is current agreement that obesity [waist circumfer-
ence (WC)], insulin resistance, dyslipidemia and hypertension [8] are MS core components.
Moreover, MS is strictly related to T2DM with concomitant cardiovascular diseases (CVD) [9].
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N-linked oligosaccharides of glycoproteins (N-glycans) are emerging as powerful and reli-
able biomarkers of several diseases [10]. N-glycans play important biological roles by influenc-
ing the functions of glycoprotein [11] involved in various cellular recognition signals. N-
glycans are also involved in pathological situations such as cancer and inflammation [12–15].
Usage of N-glycans as biomarkers in clinical practice is facilitated by the existence of methodol-
ogy such as high-throughput technology platform designed to profile N-glycans on proteins
(DSA-FACE) [16].

It is known that an aberrant O-GlcNAc modification of proteins is involved in T2DM, as
well as in cardiovascular diseases and insulin resistance [17–20]. It is hypothesized that in these
pathological conditions hyperglycemia causes an increase in the levels of UDP-N-acetylgluco-
samine (UDP-N-GlcNAc) through the hexosamine biosynthetic pathway (HBP). In such a
pathway, UDP-GlcNAc is the main sugar donor substrate for O-GlcNAc transferase (OGT),
an enzyme that catalyzes a reversible form of post-translational protein O-glycosylation [21,
22]. At variance, little is known regarding the changes in N-glycans during MS and T2DM. In
particular, a study conducted on mice with T2DM demonstrated an increase of core-fucosy-
lated serum N-glycans and, concomitantly, increased mRNA levels of α-1,6-fucosyltransferase
in the liver [23]. It has been demonstrated that modifications of fucose content in serum glyco-
proteins occur also in T2DM patients [24–25] together with a deficit on GnT-4a glycosyltrans-
ferase activity in their pancreatic beta cells [26], i.e the enzyme that generates the core β1–4
GlcNAc linkage among the N-glycan structures.

The biosynthesis of glycans depends on the complicated concerted action of glycosyltrans-
ferases, therefore the structures of glycans are much more variable than those of proteins and
nucleic acids. N-glycan synthesis can be easily altered by pathophysiological conditions [10]
such as inflammatory and autoimmune diseases and in the pathophysiological process of
aging. Accordingly, glucose-related alterations of the glycans could be relevant to understand
the complex physiological changes in metabolic syndrome and diabetes mellitus. Therefore we
determined the changes in N-glycome on serum glycoproteins in a large cohort of healthy sub-
jects and Type 2 diabetic subjects with or without metabolic syndrome.

Materials and Methods

Patients
Five hundred and sixty two T2DM patients (mean age (SD), 65.6 (8.2) years) and 599 healthy
control subjects (CTRs) (mean age (SD), 58.5 (12.4) years) have been enrolled from central
part of Italy after informed consent was obtained from each subject. The study protocol was ap-
proved by the Ethics Committee of INRCA. All subjects gave written informed consent. T2DM
was diagnosed according to the American Diabetes Association Criteria [27]. Inclusion criteria
were: BMI<40 kg/m2, age 35 to 85 years, ability and willing to give written informed consent
and to comply with the requirements of the study. Information collected included data on vital
signs, anthropometric factors, medical history and behaviors, as well as physical activity. The
presence/absence of diabetic complications was evidenced as follows: diabetic retinopathy by
fundoscopy through dilated pupils and/or fluorescence angiography; incipient nephropathy,
defined as an urinary albumin excretion rate>30 mg/24h and a normal creatinine clearance;
renal failure, defined as an estimated glomerular filtration rate>60 mL/min per 1.73 m2; neu-
ropathy established by electromyography; ischemic heart disease defined by clinical history,
and/or ischemic electrocardiographic alterations; peripheral vascular disease including athero-
sclerosis obliterans and cerebrovascular disease on the basis of history, physical examinations
and Doppler velocimetry. Among the 309 T2DM patients with at least one complication, 102
were affected by neuropathy, 35 by lower limb arteriopathy obliterans, 25 by arteriopathy of
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the super-aortic trunks, 96 by cardiovascular ischemia, 71 by nephropathy, 150 by retinopathy
and 21 by renal failure. Hypertension was defined as a systolic blood pressure>140 mmHg
and/or a diastolic blood pressure>90 mmHg, measured while the subjects were sitting, which
was confirmed in at least three different occasions. All the selected subjects consumed a Medi-
terranean diet. The diagnosis of metabolic syndrome was made depending on the presence of
at least 3 of the following parameters, according to Adult Treatment Panel III-2001 (ATP III)
criteria: abdominal obesity (WC> 102 cm for males and> 88 cm for females), hypertension
(systolic blood pressure> 130 mmHg and/or diastolic blood pressure> 85 mm Hg) or history
of antihypertensive usage, hypertriglyceridemia (� 150 mg/dl) or presence of treatment for
this disorder, low HDL-C (< 40 mg/dl in males and< 50 mg/ dl in females), and high fasting
plasma glucose (� 110 mg/dl) or presence of diagnosis of T2DM [6,28]. Overnight fasting ve-
nous blood samples of all subjects were collected from 8:00 to 9:00 a.m. The samples were ei-
ther analyzed immediately or stored at -80°C for no more than 10 days.

Laboratory assays
Blood concentrations of total and HDL cholesterol, triglycerides, fasting glucose, HbA1c, fast-
ing insulin, and WBC were measured by standard procedures.

N-glycan analysis using the ABI 3130 sequencer
The N-linked glycans present on the serum proteins were analyzed using DSA-FACE technolo-
gy (as described in [16, 29]. Briefly, the glycoproteins were denatured by adding 2 μL of dena-
turing buffer (10 mM NH4HCO3, pH 8.3, 5% SDS) to 2 μL serum in a PCR 96-well plate. The
plate was heated at 95°C for 5 min and cooled for 15 min in a PCR thermocycler, then com-
bined with 3 μL of peptide-Nglycosidase F (PNGase F; 2.2U/uL and 3.33% NP40 in denaturing
buffer, New England Biolabs). The plate was incubated at 37°C for 3 h. Subsequently, 100 uL of
water was added, and 6 μL of the resulting solution was transferred to a new PCR plate and
evaporated to dryness at 60°C in the thermocycler. N-Glycans were derivatized by adding 2 μL
of a labeling solution (1:1 mixture of 20 mM 8-Amino-1,3,6-PyreneTriSulfonic acid (APTS,
Molecular Probes) in 1.2 M citric acid and 1 M NaCNBH3 in dimethyl sulfoxide). The tightly
closed plate was then heated at 37°C for 16 h. Water (200 μL) was added to stop the reaction
and to dilute the label to approximately 100 pmol/μL. In order to separate the N-glycans ac-
cording to size and not to charge, the glycan sialic acids groups, containing negative charges,
are removed by a sialidase-digestion. Two μL of the solution was transferred to a new 96 well
plate. Digestion with 0.2 μL of Arthrobacter ureafaciens sialidase (Roche Diagnostics) was done
in 3 μL of 20 mMNH4Ac, pH 5, and the plate was incubated 16 h at 37°C. Lastly, was added
160 μL of water. 10 ul of these labeled N-glycans were analyzed by DSA-FACE technology,
using an ABI 3130 sequencer (Applied Biosystems). Data analysis was performed using the
Genescan 3.1 software (Applied Biosystems).

Serum Protein N-Glycan Profiling
At last 10 peaks were detected in all the samples, with each peak representing a different N-gly-
can structure (S1 Fig.).

In particular: peak 1 is an agalacto, core-α-1,6-fucosylated diantennary glycan (NGA2F);
peak 2 is an agalacto core-α-1,6-fucosylated bisecting diantennary glycan (NGA2FB); peak 3
and peak 4 assess the isomers arising from upper α(1,6)- vs lower (a1,3)-arm galactosylation of
the core-α-1,6-fucosylated diantennary glycan NG1A2F, i.e, respectively, the isomer α(1,6)-
arm monogalactosylated, NG1(6)A2F, and the isomer α(1,3)-arm monogalactosylated, NG1
(3)A2F; peak 5 is a digalacto diantennary glycan (NA2); peak 6 is a digalacto core-α-1,6-
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fucosylated diantennary glycan (NA2F); peak 7 is a digalacto core α-1,6-fucosylated bisecting
diantennary glycan (NA2FB), peak 8 is a triantennary glycan (NA3), peak 9 is a branching α-
1,3-fucosylated triantennary glycan (NA3F), peak 10 (P10) is a tetra-galactosylated core-α-1,6-
fucosylated tetrantennary glycan (NA4). The structures of peaks as well as the isomers distribu-
tion of NG1A2F have been assigned as previously indicated by Liu et al. [30] and Bunz et al.
[31].

We quantified the heights of the ten peaks that were detected in all the samples to obtain a
numerical description of the profiles, and analyzed these data with SPSS 17.0.

Statistical analysis
Data were analyzed with R. Robust linear regression was performed using the package Robust-
base (CIT). The packagemulttest was used to perform the False Discovery Rate (FDR) correc-
tion for multiple comparisons using the Benjamini–Hochberg procedure. Pearson partial
correlation coefficients were calculated to analyze the association between peaks values and the
other independent variables.

Results

Comparison of serum N-glycans profiles in T2DM, T2DM without
complications (T2DM-), and T2DM with complication (T2DM+)
We examined the N-glycome profile of desialylated serum from a cohort of 1162 samples,
characterized for the presence of diabetes, diabetic complications and metabolic syndrome
(Table 1).

As it is well established that sex influences the serum N-glycosylation pattern (see in S1
Table), males and females were analyzed separately.

A robust linear model was built for each peak and age was used as covariate in order to cor-
rect for age-dependent variations in N-glycan peaks. We first focused on N-glycans features
whose abundance was significantly different between CTR and T2DM, independently from the
presence of complications (Table 2).

Both in males and in females, the α(1,6)-arm monogalactosylated, NG1(6)A2F, as well as
the α(1,3)-arm monogalactosylated, NG1(3)A2F, core-α-1,6-fucosylated diantennary glycans
(respectively identified by peak 3 and peak 4), resulted significantly lower in T2DM respect to
CTR (NG1(6)A2F, P<0.001; NG1(3)A2F, P<0.01). In addition, digalactosylated diantennary
glycans NA2, (or peak 5) were significantly higher in T2DM respect to CTR, but only in male
patients (P<0.01).

Then, we compared T2DM- and T2D2M+ with CTR. We found that both in males and in
females NG1(6)A2F glycans were significantly lower in T2DM- (NG1(6)A2F, P<0.001) and in
T2DM+ (P<0.001) respect to CTR. Notably, the decrease in NG1(6)A2F levels was more evi-
dent in T2DM+, while T2DM- showed intermediate values between CTR and T2DM+. In
males, but not in females, NG1(3)A2F and NA2 N-glycans resulted significantly different be-
tween T2DM+ and CTR, although also in this case the levels of the two peaks in T2DM- was
halfway. A similar trend was observed for NG1(3)A2F and NA2 in females, although it did not
reach statistical significance. No significant differences were found when we compared T2DM-
with T2DM+.

Association of serum N-glycans with diabetic complications
We then evaluated the association between serum N-glycomic peaks values and diabetic com-
plications. To this aim, we grouped diabetic patients with complications (i.e. T2DM+) in 2 new
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groups: i) T2DM+�, including diabetic patients with micro-complications (i.e patients affected
by neuropathy or/and nephropathy, or/and renal failure, or/and retinopathy), and ii) T2DM
+��, including diabetic patients with macro-complications (i.e. patient with at least one of these
complications: lower limb arteriopathy obliterans, arteriopathy of the super aortic trunks, car-
diovascular diseases). We compared the levels of each peak between T2DM-, T2DM+� and
T2DM+��, subdividing the cohort on the basis of the sex of the subjects and using age as covar-
iate (Table 3).

Although after FDR correction no comparison reached the statistical significance, NG1(6)
A2F levels differed between T2DM+�� and T2DM- (P = 0.01 in males and P = 0.05 in females),
but not between T2DM+� and T2DM-. In females, but not in males, minor differences were
observed also for NG1(3)A2F (P = 0.02) between T2DM+�� and T2DM- and for the digalacto
core-fucosylated diantennary glycans (NA2F) and the triantennary glycans (NA3) between
T2DM+�� and T2DM+� (P = 0.01 and P<0.01 respectively).

Association of serum N-glycans with metabolic syndrome
As reported in Table 1, metabolic syndrome affects not only a large fraction of diabetic patients
from our cohort, but also a number of non-diabetic controls. Based on these considerations, we

Table 1. Characteristics of the cohort under analysis.

Presence of diabetes Gender Presence/Absence of complications Presence/Absence of MS
Mean age ± SD Mean age ± SD Mean age ± SD

Controls Males N = 231 - With MS: N = 21

(61.8±12.7)

(58.8±11.7) Without MS N = 210

(58.5±11.6)

Females N = 368 - With MS N = 49

(65.3±10.4)

(58.2±12.7) Without MS N = 319

(57.1±12.7)

Diabetic patients Males N = 302 With complications N = 189 With MS N = 92

(66.2±7.2)

(65.6±8.1) Without MS N = 97

(65.0±8.8)

(65.0±8.3) Without complications N = 113 With MS N = 51

(63.3±7.8)

(64.1±8.5) Without MS N = 62

(64.7±9.0)

Females N = 260 With complications N = 120 With MS N = 91

(68.8±6.5)

(68.9±6.6) Without MS N = 29

(69.2±7.1)

(66.6±7.8) Without complications N = 140 With MS N = 100

(64.7±8.1)

(64.7±8.1) Without MS N = 40

(64.7±8.4)

Subjects were classified on the basis of the presence of diabetes, diabetic complications and metabolic syndrome (MS). For each class, the number(N) of

males and females is indicated, while the mean age ± it's standard deviation(SD) are reported between round brackets.

doi:10.1371/journal.pone.0119983.t001

N-Glycomic Changes in Type 2 Diabetes Mellitus

PLOS ONE | DOI:10.1371/journal.pone.0119983 March 20, 2015 6 / 16



Table 2. Multiple comparison of serum N-glycans changes between diabetic patients; diabetic patients with/without complications and controls.

CTR T2DM T2DM- T2DM+ T2DM+ vs T2DM-
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

q-value q-value q-value q-value
Males N = 231 N = 302 N = 113 N = 189
Peaks (structure)

P1 (NGA2F) 9.36 (2.59) 9.69 (3.23) 9.63 (3.39) 9.73 (3.14)

ns

P2 (NGA2FB) 1.59 (0.49) 1.84 (0.69) 1.78 (0.58) 1.87 (0.74)

ns

P3 (NG1(6)A2F) 6.16 (1.29) 5.18 (1.36) 5.34 (1.39) 5.09 (1.34)

<0.001 <0.001 <0.001 ns

P4 (NG1(3)A2F) 5.08 (0.82) 4.81 (1.01) 4.88 (0.91) 4.78 (1.07)

<0.01 <0.01 ns

P5 (NA2) 43 (3.99) 44.25 (4.85) 43.97 (4.97) 44.42 (4.79)

<0.01 <0.01 ns

P6 (NA2F) 18.03 (2.49) 17.45 (2.52) 17.49 (2.41) 17.43 (2.59)

ns

P7 (NA2FB) 5.89 (1.29) 6.19 (2) 6.03 (1.65) 6.28 (2.18)

ns

P8 (NA3) 6.64 (1.82) 6.39 (1.74) 6.68 (1.74) 6.21 (1.72)

ns

P9 (NA3F) 2.81 (1.24) 2.86 (1.05) 2.83 (1.02) 2.88 (1.06)

ns

P10 (NA4) 1.44 (0.49) 1.34 (0.43) 1.37 (0.45) 1.31 (0.41)

ns
Table 2. Multiple comparison of serum N-glycans changes between diabetic patients; diabetic patients with/without complications and controls.

Females N = 368 N = 260 N = 140 N = 120
Peaks (structure)

P1 (NGA2F) 9.12 (3.17) 9.91 (3.04) 9.77 (3.18) 10.07 (2.87)

ns

P2 (NGA2FB) 1.64 (0.65) 1.93 (0.67) 1.88 (0.71) 2 (0.63)

ns

P3 (NG1(6)A2F) 5.82 (1.33) 5.01 (1.33) 5.09 (1.39) 4.91 (1.25)

<0.001 <0.001 <0.001 ns

P4 (NG1(3)A2F) 4.9 (0.91) 4.54 (0.74) 4.58 (0.75) 4.48 (0.73)

<0.01 ns

P5 (NA2) 43.44 (4.34) 44.01 (4.37) 43.93 (4.85) 44.1 (3.74)

ns

P6 (NA2F) 17.6 (2.99) 16.74 (2.4) 16.88 (2.54) 16.58 (2.22)

ns

P7 (NA2FB) 6.07 (1.43) 6.16 (1.52) 6.13 (1.54) 6.2 (1.51)

ns

P8 (NA3) 7.59 (1.81) 7.8 (1.87) 7.91 (1.95) 7.66 (1.78)

ns

P9 (NA3F) 2.14 (1) 2.23 (1.09) 2.18 (1.09) 2.29 (1.09)

ns

(Continued)
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compared the N-glycomic profiles of healthy controls (not affected by diabetes or MS) with
those of T2DM patients with or without complications and with or without MS (Table 4).

Interestingly, in males NG1(6)A2F followed a decreasing trend from the extreme “healthy”
phenotype (CTR without MS) to the extreme “unhealthy” phenotype (T2DM+ with MS)
(Fig. 1).

This trend was present, although in a less regular fashion, also in females. In both males and
females, NG1(3)A2F resulted significanly lower in T2DM respect to CTR only when the pa-
tients were affected also by metabolic syndrome, suggesting a synergistic effect of the two path-
ological conditions in altering the peak levels. Finally, in females digalacto core-α-1,6-
fucosylated diantennary glycans (NA2F) and digalacto core α-1,6-fucosylated bisecting dia-
ntennary glycans (NA2FB)) were specifically altered in CTR affected by MS (Table 4).

Correlation of N-glycans profiling with metabolic syndrome parameters
Finally, we evaluated the correlation of metabolic syndrome parameters with the glycosylation
features. Person correlation was calculated using the entire cohort, subdivided only on the
basis of the sex of the subjects (533 males and 628 females; Table 5).

Interestingly, considering an effect size>0.15 and a P<0.05, we found that both in males
and in females NG1(6)A2F and NG1(3)A2F levels were strongly negatively correlated with
most of metabolic syndrome parameters, including waist/hip ratio, triglycerides, glycemia, gly-
cated haemoglobin and the absolute number of neutrophils. In addition, NG1(6)A2F levels
were negatively correlated with HOMA. In females, a negative correlation was found between
NG1(6)A2F and BMI, between NG1(3)A2F and insulin levels and between NG1(6)A2F and
NG1(3)A2F and triglyceride levels. Consistently, NG1(3)A2F was positively correlated with
HDL levels. Although NG1(6)A2F and NG1(3)A2F were the main N-glycans that emerged
from this analysis, other peaks, including P2 (agalacto core-α-1,6-fucosylated bisecting dia-
ntennary glycans (NGA2FB), digalacto core-α-1,6-fucosylated diantennary glycans (NA2F),
tri-(NA3) and tetragalactosylated (NA4) glycans resulted significantly associated with one or
more metabolic syndrome parameters.

Discussion
Glycosylation is the enzymatic addition of oligosaccharides (also known as glycans) to proteins
and lipids, and it is one of the most common co-/posttranslational modifications of proteins.
Most of the human secreted and membrane-bound proteins are glycosylated, suggesting a de-
terminant role of carbohydrates in protein function [32]. Moreover altered glycosylation char-
acterized by different number (macroheterogeneity) and nature of glycans

Table 2. (Continued)

Females N = 368 N = 260 N = 140 N = 120
Peaks (structure)

P10 (NA4) 1.67 (0.5) 1.69 (0.47) 1.66 (0.46) 1.72 (0.48)

ns

For each peak the mean and the SD are indicated. The reference group in each comparison is CTR. For each comparison, the FDR-corrected p-value (q-

value) is reported if <0.05 Structure abbreviations: N-glycans (N) have a common pentasaccharide core denoted as A0 and consists of two N-

acetylglucosamines (GlcNAc) and three mannose residues; F α-(1–6) linked core fucose; Ax: number of antennary GlcNAc attached to the trimannosyl

core; B: bisecting GlcNAc; Gx: number of α(1–4) linked galactose (G); G1(3) and G1(6) indicates that the galactose is either on the α(1–3) or α(1–

6) antenna.

doi:10.1371/journal.pone.0119983.t002
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Table 3. Multiple comparisons between diabetic patients without complications and diabetic patients with micro and macro-complications.

T2DM- without
complication

T2DM+* with micro
complications

T2DM+** with macro
complications

T2DM+* vs T2DM
+**

Mean(SD) Mean(SD) Mean(SD)
P value P value P value P value

Males N = 113 N = 101 N = 88
Peaks
(structure)

P1 (NGA2F) 9.63 (3.39) 9.89 (3.38) 9.54 (2.84)

ns

P2 (NGA2FB) 1.78 (0.58) 1.84 (0.88) 1.9 (0.55)

ns

P3 (NG1(6)A2F) 5.34 (1.39) 5.28 (1.37) 4.86 (1.29)

P = 0.01 ns

P4 (NG1(3)A2F) 4.88 (0.91) 4.87 (1.2) 4.67 (0.9)

ns

P5 (NA2) 43.97 (4.97) 44.28 (5.02) 44.58 (4.53)

ns

P6 (NA2F) 17.49 (2.41) 17.38 (2.83) 17.47 (2.3)

ns

P7 (NA2FB) 6.03 (1.65) 5.97 (1.8) 6.65 (2.5)

ns

P8 (NA3) 6.68 (1.74) 6.29 (1.69) 6.13 (1.77)

ns

P9 (NA3F) 2.83 (1.02) 2.85 (1.14) 2.91 (0.97)

ns

P10 (NA4) 1.37 (0.45) 1.33 (0.4) 1.29 (0.43)

ns
Table 3. Multiple comparisons between diabetic patients without complications and diabetic patients with micro and macro-complications.

Females N = 140 N = 71 N = 49
Peaks (structure)

P1 (NGA2F) 9.77 (3.18) 9.95 (2.77) 10.24 (3.02)

ns

P2 (NGA2FB) 1.88 (0.71) 1.99 (0.6) 2 (0.67)

ns

P3 (NG1(6)A2F) 5.09 (1.39) 5.04 (1.18) 4.73 (1.33)

P = 0.05 ns

P4 (NG1(3)A2F) 4.58 (0.75) 4.51 (0.65) 4.44 (0.84)

P = 0.02 ns

P5 (NA2) 43.93 (4.85) 43.8 (3.42) 44.53 (4.17)

ns

P6 (NA2F) 16.88 (2.54) 16.99 (2.14) 15.98 (2.22)

P = 0.01

P7 (NA2FB) 6.13 (1.54) 6.42 (1.62) 5.87 (1.28)

ns

P8 (NA3) 7.91 (1.95) 7.39 (1.78) 8.05 (1.72)

P<0.01

P9 (NA3F) 2.18 (1.09) 2.22 (1.07) 2.38 (1.13)

ns

(Continued)
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Table 3. (Continued)

Females N = 140 N = 71 N = 49
Peaks (structure)

P10 (NA4) 1.66 (0.46) 1.68 (0.45) 1.77 (0.51)

ns

For each peak the mean and the SD are indicated. The reference group in each comparison is T2DM-. For each comparison the nominal p-value is

reported if < = 0.05.

doi:10.1371/journal.pone.0119983.t003

Table 4. Serum N-glycans differences between controls and diabetic patients with and without MS.

CTR without MS CTR with MS T2DM- without MS T2DM- with MS T2DM+ without MS T2DM+ with MS
Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD) Mean(SD)
P value P value P value P value P value P value

Males N = 210 N = 21 N = 113 N = 62 N = 97 N = 92
Peaks (structure)

P1 (NGA2F) 9.28 (2.58) 10.21 (2.61) 9.29 (2.66) 10.04 (4.09) 9.82 (3.16) 9.63 (3.13)

P2 (NGA2FB) 1.59 (0.5) 1.6 (0.38) 1.72 (0.54) 1.85 (0.63) 1.88 (0.81) 1.86 (0.68)

P3 (NG1(6)A2F) 6.2 (1.32) 5.7 (0.88) 5.38 (1.35) 5.3 (1.45) 5.3 (1.28) 4.87 (1.38)

P<0.01 P<0.001 P<0.001 P<0.001

P4 (NG1(3)A2F) 5.09 (0.83) 4.9 (0.8) 5.03 (1) 4.68 (0.75) 4.88 (0.8) 4.67 (1.3)

P<0.05 P<0.001

P5 (NA2) 42.97 (4.06) 43.31 (3.23) 44.15 (4.51) 43.75 (5.51) 44.09 (4.69) 44.77 (4.89)

P<0.01

P6 (NA2F) 18.11 (2.48) 17.26 (2.52) 17.78 (2.21) 17.14 (2.62) 17.62 (2.53) 17.22 (2.65)

P7 (NA2FB) 5.92 (1.32) 5.6 (0.93) 6.04 (1.41) 6.02 (1.91) 6.35 (1.76) 6.22 (2.55)

P8 (NA3) 6.57 (1.79) 7.29 (1.99) 6.52 (1.66) 6.88 (1.82) 6.03 (1.73) 6.41 (1.7)

P9 (NA3F) 2.84 (1.24) 2.52 (1.26) 2.74 (1.02) 2.94 (1.02) 2.74 (1.09) 3.02 (1.02)

P10 (NA4) 1.42 (0.49) 1.62 (0.52) 1.35 (0.43) 1.41 (0.48) 1.3 (0.43) 1.33 (0.39)
Table 4. Serum N-glycans differences between controls and diabetic patients with and without MS.

Females N = 319 N = 49 N = 40 N = 100 N = 29 N = 91
Peaks (structure)

P1 (NGA2F) 8.9 (3) 10.61 (3.8) 9.4 (3.4) 9.91 (3.1) 9.69 (2.46) 10.19 (2.99)

P2 (NGA2FB) 1.58 (0.64) 2 (0.58) 1.68 (0.62) 1.96 (0.72) 1.93 (0.64) 2.02 (0.63)

P3 (NG1(6)A2F) 5.92 (1.32) 5.21 (1.3) 5.43 (1.67) 4.95 (1.25) 4.88 (1.44) 4.92 (1.19)

P = 0.05 P<0.001 P<0.01 P<0.001

P4 (NG1(3)A2F) 4.95 (0.91) 4.61 (0.86) 4.71 (0.86) 4.53 (0.71) 4.57 (0.73) 4.45 (0.73)

P<0.01 P<0.01

P5 (NA2) 43.33 (4.24) 44.13 (4.9) 43.45 (5.62) 44.12 (4.52) 45.11 (3.51) 43.78 (3.77)

P6 (NA2F) 17.93 (2.96) 15.47 (2.22) 17.48 (3.18) 16.64 (2.21) 16.39 (1.55) 16.64 (2.4)

P<0.01
P7 (NA2FB) 6.14 (1.4) 5.6 (1.52) 6.28 (1.54) 6.07 (1.55) 6.02 (1.52) 6.25 (1.51)

P = 0.01
P8 (NA3) 7.49 (1.71) 8.22 (2.31) 7.78 (1.59) 7.96 (2.08) 7.19 (1.97) 7.81 (1.7)

P9 (NA3F) 2.12 (0.97) 2.26 (1.17) 2.18 (0.93) 2.18 (1.16) 2.65 (0.93) 2.17 (1.12)

P10 (NA4) 1.64 (0.45) 1.88 (0.71) 1.62 (0.37) 1.68 (0.49) 1.55 (0.48) 1.77 (0.47)

For each peak the mean and the SD are indicated. The reference group in each comparison is CTR without MS. For each comparison, the FDR-corrected

p-value (q-value) is reported if <0.05.

doi:10.1371/journal.pone.0119983.t004
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(microheterogeneity) [25] is present in many pathophysiological conditions such as cancer, in-
flammation, autoimmune and aging [11, 14]. Thus, it is a dynamic equilibrium. Within an in-
dividual, the glycan signature is highly reproducible [33], however, during aging or pregnancy
or when a disease occurs the glycan pattern can change dramatically [34, 35].

An N-glycan (N-linked oligosaccharide) is a sugar chain covalently linked to an asparagine
residue of a polypeptide chain. This link occurs usually through a N-acetylglucosamine
(GlcNAc) residue that is bound to a consensus peptide sequence: Asn-XSer. Furthermore, a
GlcNAc sugar residue can be attached in O-linkage (O-GlcNAc) to specific Ser/Thr residues of
proteins. This relatively recently identified form of nucleocytoplasmic O-glycosylation is medi-
ated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) [36]. Recent studies demon-
strated that high levels of circulating glucose, diabetes and diabetic complications are linked
with this type of post-translational modification [37–39].

We have used DSA-FACE based N-glycan analysis system to quantify and profile N-glycosi-
laton of human serum proteins. This high-throughput technology is robust, reproducible, sen-
sitive, and, importantly, quantitative [40]. We found that that α(1,6)-arm monogalactosylated
core-α-1,6-fucosylated diantennary glycans, NG1(6)A2F, (discriminated by peak 3 were clearly
altered in patient with type 2 diabetes. In particular NG1(6)A2F levels resulted significantly
lower in all (with and without complication) T2DM respect to CTR (NG1(6)A2F, P<0.001).
Macro vascular-complications were also found related to its decrease. These findings, taken to-
gether, leads to the working hypothesis T2DM is related to NG1(6)A2F and might be moni-
tored by profiling N-glycosilation of serum protein. We also found that there is an increase in
the digalactosylated, diantennary glycans (NA2) in T2DM compared to CTR, which becomes
more pronounced in the presence of complications (being statistically significant in males and
having similar trend in females). These structural changes may occur as the result of alterations
in the levels of glycosyltransferases, glycosidases, and the sugar nucleotide donors [41].

When the activity of α-1,6-fucosyltransferase 8 (FUT8) is reduced, the α(1,6)-arm monoa-
galacto core-α-1,6-fucosylated diantennary glycans (NG1(6)A2F) can be used by β-1,4-galacto-
syltransferase (βGalT) as a substrate to terminally add another galactose residue and form the
digalactosylated, diantennary glycans (NA2) (see S2 Fig.). This will reduce the amount of NG1
(6)A2F and increase the amount of NA2 in serum. There are some reports stating that βGalT
activity is increased in diabetic patients with complications [42] thereby supporting this

Fig 1. 1A. The abundance of α(1,6)-armmonogalactosylated, core-α-1,6-fucosylated diantennary
glycan NG1(6)A2F, assessed by peak 3 (P3) levels, in CTR and T2DM patients with and without MS.
The boxplots represent a comparison of peak 3 levels in males in six classes of subjects: CTR without MS,
CTR with MS, T2DM- without MS, T2DM- with MS, T2DM+ without MS, T2DM+ with MS. 1B. The abundance
of α(1,6)-arm monogalactosylated, core-α-1,6-fucosylated diantennary glycan NG1(6)A2F, assessed by
peak 3 (P3) levels, in CTR and T2DM patients with and without MS. The boxplots represent a comparison of
peak 3 levels in females in six classes of subjects: CTR without MS, CTR with MS, T2DM- without MS,
T2DM- with MS, T2DM+ without MS, T2DM+ with MS.

doi:10.1371/journal.pone.0119983.g001
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hypothesis. A possible reason for increased βGalT activity in diabetic patients could be an in-
crease in UDP-glucose concentration as reported in some diabetic tissues [43]. UDP-glucose

Table 5. Pearson correlation of serum N-glycans peaks with metabolic syndrome parameters.

BMI Waist.H/P Glic HbA1c NEU ABS HDL Trigl Insulin HOMA
Males
Peaks (structure)

P1 (NGA2F) 0.04 0 0.02 0.01 0.04 -0.01 0 -0.01 0.04

P2 (NGA2FB) 0.09 0.11 0.16 0.15 0.03 -0.06 0.04 -0.04 0.04

<0.05 <0.01 <0.01

P3 (NG1(6)A2F) -0.08 -0.24 -0.32 -0.33 -0.23 0.06 -0.14 -0.01 -0.19

<0.001 <0.001 <0.001 <0.001 <0.01 <0.001

P4 (NG1(3)A2F) -0.06 -0.18 -0.16 -0.15 -0.15 0.09 -0.11 -0.08 -0.11

<0.001 <0.01 <0.01 <0.01 <0.05 <0.05

P5 (NA2) 0.02 0.1 0.13 0.17 0.13 -0.02 -0.01 -0.01 0.07

<0.05 <0.01 <0.05

P6 (NA2F) -0.02 -0.11 -0.08 -0.08 -0.2 0.03 -0.01 0.05 -0.03

<0.05 <0.001

P7 (NA2FB) -0.05 0.06 0.06 0.02 -0.06 0.02 0.04 0.05 0.09

P8 (NA3) 0.04 0.04 0 -0.03 0.06 -0.07 0.16 0 -0.05

<0.01

P9 (NA3F) -0.01 0.07 -0.03 -0.01 0.19 0.01 -0.02 -0.01 -0.02

<0.001

P10 (NA4) -0.02 -0.02 -0.05 -0.08 0 -0.05 0.04 -0.07 -0.08
Table 5. Pearson correlation of serum N-glycans peaks with metabolic syndrome parameters.

Females
Peaks (structure)

P1 (NGA2F) 0.16 0.22 0.12 0.11 -0.01 -0.05 0.08 0.1 0.13

<0.001 <0.01 <0.01 <0.05 <0.01

P2 (NGA2FB) 0.18 0.29 0.23 0.21 0.05 -0.09 0.16 0.14 0.19

<0.05 <0.001 <0.001 <0.001

P3 (NG1(6)A2F) -0.17 -0.21 -0.32 -0.35 -0.22 0.11 -0.24 -0.09 -0.25

<0.001 <0.001 <0.001 <0.001 <0.001 <0.05 <0.001 <0.05 <0.001

P4 (NG1(3)A2F) -0.1 -0.21 -0.25 -0.24 -0.19 0.2 -0.21 -0.17 -0.14

<0.05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

P5 (NA2) 0.01 0.06 0.07 0.09 0.11 -0.03 0.04 0 0.02

<0.05 <0.01

P6 (NA2F) -0.19 -0.33 -0.13 -0.17 -0.11 0.1 -0.16 -0.1 -0.07

<0.001 <0.001 <0.01 <0.001 <0.01 <0.5 <0.001 <0.05

P7 (NA2FB) -0.12 -0.08 0.02 -0.02 -0.05 0.07 -0.05 -0.13 -0.06

<0.01 <0.01

P8 (NA3) 0.1 0.12 0.09 0.14 0.11 -0.15 0.26 0.12 0.08

<0.05 <0.05 <0.05 <0.001 <0.05 <0.001 <0.001 <0.01

P9 (NA3F) 0.1 0.12 0 0 0.09 -0.02 -0.04 0.09 -0.01

<0.05 <0.01 <0.05 <0.05

P10 (NA4) 0.07 0.06 0.05 0.1 0.11 -0.13 0.18 0.08 0.02

<0.05 <0.01 <0.01 <0.001

Significant results are highlighted in bold considering a correlation coefficient cut off value of 0.15 and a P = <0.05.

doi:10.1371/journal.pone.0119983.t005
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can be converted in UDP-galactose (donor substrate for βGalT) by UDP-galactose epimerase
increasing the substrate available for βGalT and it's activity (see S2 Fig.).

Measuring UDP-galactose levels and glycosyltransferase activities in humans is very hard,
and therefore further studies on diabetic animal model are needed to shed light on
this mechanism.

We also found an important relationship among the N-glycan profile and MS. NG1(6)A2F
and NG1(3)A2F levels were strongly negatively correlated with most of metabolic syndrome
parameters, including waist/hip ratio, triglycerides, glycemia, glycated haemoglobin and the
absolute number of neutrophils. In addition, NG1(6)A2F levels are negatively correlated with
HOMA and NG1(3)A2F levels are positively correlated with HDL. These results clearly dem-
onstrate that both N-glycans are sensitive biomarkers to this syndrome. Furthermore NG1(6)
A2F and NG1(3)A2F decrease more with the increased severity of patient phenotype from the
extreme “healthy” (CTR without MS) to the extreme “unhealthy” (T2DM+ with MS), suggest-
ing a synergistic effect of the two pathological conditions on levels of these two N-
glycan isomers.

Thus serum N-glycome profile can point out T2DMmetabolism alterations as well as dis-
turbances linked to MS. Changes in the glycosylation profiles of serum proteins could also be
caused by changes in the clearance rate of the glycoproteins [44]. The asialoglycoprotein recep-
tor of the liver clears glycoproteins from blood. Under stress conditions this clearance can in-
crease thereby modifying the glycan composition in serum [45]. Metabolic syndrome could
induce similar stress, enhancing this clearance capacity and modifying NG1(6)A2F and NG1
(3)A2F levels.

The open question is whether N-glycosilation profile changes are consequence of T2DM
and/or MS or the N-glycosilation alteration can cause or enhance the severity of T2DM, com-
plications and MS. During e.g. diabetic microangiopathy, a generalized thickening of basement
membranes occurs [46]. Glycoproteins and glycolipids form integral parts of these basement
membranes so alterations in the glycosylation machinery could induce or worsen this compli-
cation. Combining glycan analysis (using DSA-FACE and high-performance liquid chroma-
tography) with proteomics could lead to the identification of glycosylation changes, which
characterise diabetes, on particular glycoproteins, providing new insights on this illness and
its complications.

In conclusion, we demonstrate for the first time that N-glycan profiles of T2DM patients
and/or subjects with MS show changes, that are associated also to the presence of macrovascu-
lar complications. Our data suggest that the measurement of N-glycan levels could provide a
noninvasive surrogate marker for T2DM and MS. Further studies in carefully selected human
cohorts and in animal model systems are needed to clarify the molecular mechanism underly-
ing the statistical associations observed in our sample. Moreover, further studies are needed to
verify whether the measurements of N-glycans can be a useful tool to assess the efficacy of ther-
apies against T2DM and/or MS.

Supporting Information
S1 Fig. A typical desialylated N-glycan profile of human serum proteins. Each number rep-
resents a peak and indicates its molecular structure
(TIF)

S2 Fig. Conversion of UDP-glucose in UDP-galactose, available for βGalT. P3, peak 3, (α
(1,6)-arm monogalactosylated core-α-1,6-fucosylated diantennary glycans, NG1(6)A2F) can
be used as acceptor substrate for β-1,4-galactosyltransferase (βGalT) to terminally add another
galactose residue to P3 and form P5, peak 5, (digalactosylated, diantennary glycan, NA2) when
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there is a reduction in α-1,6-fucosyltransferase 8 (FUT8) activity (reduced core-fucose).
(TIF)

S1 Table. Serum N-glycans differences between males and females. For each peak the mean
and the SD are indicated. The reference group in each comparison is males. The linear regres-
sion is corrected for the age of the subjects. For each comparison, the FDR-corrected p-value
(q-value) is reported if<0.05.
(DOC)
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