4,526 research outputs found
Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo
The CyIIIa·CAT fusion gene was injected into Strongylocentrotus purpuratus eggs, together with excess ligated competitor sequences representing subregions of the CyIIIa regulatory domain. In this construct, the chloramphenicol acetyltransferase (CAT) reporter gene is placed under the control of the 2300 nucleotide upstream regulatory domain of the lineage-specific CyIIIa cytoskeletal actin gene. CAT mRNA was detected by in situ hybridization in serial sections of pluteus stage embryos derived from the injected eggs. When carrier DNA lacking competitor CyIIIa fragments was coinjected with CyIIIa.CAT, CAT mRNA was observed exclusively in aboral ectoderm cells, i.e. the territory in which the CyIIIa gene itself is normally expressed (as also reported by us previously). The same result was obtained when five of seven different competitor subfragments bearing sites of DNA-protein interaction were coinjected. However, coinjection of excess quantities of either of two widely separated, nonhomologous fragments of the CyIIIa regulatory domain produced a dramatic ectopic expression of CAT mRNA in the recipient embryos. CAT mRNA was observed in gut, mesenchyme cells and oral ectoderm in these embryos. We conclude that these fragments contain regulatory sites that negatively control spatial expression of the CyIIIa gene
Recommended from our members
Role for polo-like kinase 4 in mediation of cytokinesis.
The mitotic protein polo-like kinase 4 (PLK4) plays a critical role in centrosome duplication for cell division. By using immunofluorescence, we confirm that PLK4 is localized to centrosomes. In addition, we find that phospho-PLK4 (pPLK4) is cleaved and distributed to kinetochores (metaphase and anaphase), spindle midzone/cleavage furrow (anaphase and telophase), and midbody (cytokinesis) during cell division in immortalized epithelial cells as well as breast, ovarian, and colorectal cancer cells. The distribution of pPLK4 midzone/cleavage furrow and midbody positions pPLK4 to play a functional role in cytokinesis. Indeed, we found that inhibition of PLK4 kinase activity with a small-molecule inhibitor, CFI-400945, prevents translocation to the spindle midzone/cleavage furrow and prevents cellular abscission, leading to the generation of cells with polyploidy, increased numbers of duplicated centrosomes, and vulnerability to anaphase or mitotic catastrophe. The regulatory role of PLK4 in cytokinesis makes it a potential target for therapeutic intervention in appropriately selected cancers
Convection-induced nonlinear-symmetry-breaking in wave mixing
We show that the combined action of diffraction and convection (walk-off) in
wave mixing processes leads to a nonlinear-symmetry-breaking in the generated
traveling waves. The dynamics near to threshold is reduced to a Ginzburg-Landau
model, showing an original dependence of the nonlinear self-coupling term on
the convection. Analytical expressions of the intensity and the velocity of
traveling waves emphasize the utmost importance of convection in this
phenomenon. These predictions are in excellent agreement with the numerical
solutions of the full dynamical model.Comment: 5 page
Augmentation and repair of tendons using demineralised cortical bone
BACKGROUND: In severe injuries with loss of tendon substance a tendon graft or a synthetic substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes, which may result in suboptimal outcome. A biocompatible graft with mechanical and structural properties that replicate those of normal tendon and ligament has so far not been identified. The use of demineralised bone for tendon reattachment onto bone has been shown to be effective in promoting the regeneration of a normal enthesis. Because of its properties, we proposed that Demineralised Cortical Bone (DCB) could be used in repair of a large tendon defect. METHODS: Allogenic DCB grafts in strip form were prepared from sheep cortical bone by acid decalcification and used to replace the enthesis and distal 1Â cm of the ovine patellar tendon adjacent to the tibial tuberosity. In 6 animals the DCB strip was used to bridge the gap between the resected end of the tendon and was attached with bone anchors. Force plate analysis was done for each animal preoperatively and at weeks 3, 9, and 12 post operatively. At week 12, after euthanasia x-rays were taken and range of movements were recorded for hind limbs of each animal. Patella, patellar tendon - DCB and proximal tibia were harvested as a block and pQCT scan was done prior to histological analysis. RESULTS: Over time functional weight bearing significantly increased from 44% at 3Â weeks post surgery to 79% at week 12. On retrieval none of the specimens showed any evidence of ossification of the DCB. Histological analysis proved formation of neo-enthesis with presence of fibrocartilage and mineralised fibrocartilage in all the specimens. DCB grafts contained host cells and showed evidence of vascularisation. Remodelling of the collagen leading to ligamentisation of the DCB was proved by the presence of crimp in the DCB graft on polarized microscopy. CONCLUSION: Combined with the appropriate surgical techniques, DCB can be used to achieve early mobilization and regeneration of a tendon defect which may be applicable to the repair of chronic rotator cuff injury in humans
Driving the atom by atomic fluorescence: analytic results for the power and noise spectra
We study how the spectral properties of resonance fluorescence propagate
through a two-atom system. Within the weak-driving-field approximation we find
that, as we go from one atom to the next, the power spectrum exhibits both
sub-natural linewidth narrowing and large asymmetries while the spectrum of
squeezing narrows but remains otherwise unchanged. Analytical results for the
observed spectral features of the fluorescence are provided and their origin is
thoroughly discussed.Comment: 13 pages, 5 figures; to be published in Phys. Rev. A Changed title
and conten
The M33 Variable Star Population Revealed by Spitzer
We analyze five epochs of Spitzer Space Telescope/Infrared Array Camera
(IRAC) observations of the nearby spiral galaxy M33. Each epoch covered nearly
a square degree at 3.6, 4.5, and 8.0 microns. The point source catalog from the
full dataset contains 37,650 stars. The stars have luminosities characteristic
of the asymptotic giant branch and can be separated into oxygen-rich and
carbon-rich populations by their [3.6] - [4.5] colors. The [3.6] - [8.0] colors
indicate that over 80% of the stars detected at 8.0 microns have dust shells.
Photometric comparison of epochs using conservative criteria yields a catalog
of 2,923 variable stars. These variables are most likely long-period variables
amidst an evolved stellar population. At least one-third of the identified
carbon stars are variable.Comment: Accepted for publication in ApJ. See published article for full
resolution figures and electronic table
When do Anisotropic Magnetic Susceptibilities Lead to Large NMR Shifts? Exploring Particle Shape Effects in the Battery Electrode Material LiFePO4.
Materials used as electrodes in energy storage devices have been extensively studied with solid-state NMR spectroscopy. Due to the almost ubiquitous presence of transition metals, these systems are also often magnetic. While it is well known that the presence of anisotropic bulk magnetic susceptibility (ABMS) leads to broadening of resonances under MAS, we show that for mono-disperse and non-spherical particle morphologies, the ABMS can also lead to considerable shifts, which vary substantially as a function of particle shape. This, on one hand, complicates the interpretation of the NMR spectrum and the ability to compare the measured shift of different samples of the same system. On the other hand the ABMS shift provides a mechanism with which to derive the particle shape from the NMR spectrum. In this work, we present a methodology to model the ABMS shift, and relate it to the shape of the studied particles. The approach is tested on the Li NMR spectra of single crystals and powders of LiFePO. The results show that the ABMS shift can be a major contribution to the total NMR shift in systems with large magnetic anisotropies and small hyperfine shifts, Li shifts for typical LiFePO morphologies varying by as much as 100 ppm. The results are generalised to demonstrate that the approach can be used as a means with which to probe the aspect ratio of particles. The work has implications for the analysis of NMR spectra of all materials with anisotropic magnetic susceptibilities, including diamagnetic materials such as graphite
Portable, Parallel 9-Wavelength Near-Infrared Spectral Tomography (NIRST) System for Efficient Characterization of Breast Cancer within the Clinical Oncology Infusion Suite
A portable near-infrared spectral tomography (NIRST) system was developed with simultaneous frequency domain (FD) and continuous-wave (CW) optical measurements for efficient characterization of breast cancer in a clinical oncology setting. Simultaneous FD and CW recordings were implemented to speed up acquisition to 3 minutes for all 9 wavelengths, spanning a range from 661nm to 1064nm. An adjustable interface was designed to fit various breast sizes and shapes. Spatial images of oxy- and deoxy-hemoglobin, water, lipid, and scattering components were reconstructed using a 2D FEM approach. The system was tested on a group of 10 normal subjects, who were examined bilaterally and the recovered optical images were compared to radiographic breast density. Significantly higher total hemoglobin and water were estimated in the high density relative to low density groups. One patient with invasive ductal carcinoma was also examined and the cancer region was characterized as having a contrast ratio of 1.4 in total hemoglobin and 1.2 in water
Emergence of good conduct, scaling and Zipf laws in human behavioral sequences in an online world
We study behavioral action sequences of players in a massive multiplayer
online game. In their virtual life players use eight basic actions which allow
them to interact with each other. These actions are communication, trade,
establishing or breaking friendships and enmities, attack, and punishment. We
measure the probabilities for these actions conditional on previous taken and
received actions and find a dramatic increase of negative behavior immediately
after receiving negative actions. Similarly, positive behavior is intensified
by receiving positive actions. We observe a tendency towards anti-persistence
in communication sequences. Classifying actions as positive (good) and negative
(bad) allows us to define binary 'world lines' of lives of individuals.
Positive and negative actions are persistent and occur in clusters, indicated
by large scaling exponents alpha~0.87 of the mean square displacement of the
world lines. For all eight action types we find strong signs for high levels of
repetitiveness, especially for negative actions. We partition behavioral
sequences into segments of length n (behavioral `words' and 'motifs') and study
their statistical properties. We find two approximate power laws in the word
ranking distribution, one with an exponent of kappa-1 for the ranks up to 100,
and another with a lower exponent for higher ranks. The Shannon n-tuple
redundancy yields large values and increases in terms of word length, further
underscoring the non-trivial statistical properties of behavioral sequences. On
the collective, societal level the timeseries of particular actions per day can
be understood by a simple mean-reverting log-normal model.Comment: 6 pages, 5 figure
- …