4,178 research outputs found

    A theory of multiformat communication: mechanisms, dynamics, and strategies

    Get PDF
    Extant communication theories predate the explosion of digital formats and technological advances such as virtual reality, which likely explains their predominant focus on traditional and format-level (e.g., face-to-face, email) rather than digital or characteristic-level (e.g., visual cues, synchronicity) design decisions. Firms thus lack insights into how to create and use emerging digital formats, individually or synergistically. To establish a holistic framework of bilateral multiformat communication for relationship marketing, this article reviews communication theory to establish a foundation for understanding multiformat communication and to identify any gaps (e.g., AI agents, simulated cues). The authors then review bilateral communication research in light of the identified theoretical gaps, to inform their framework. Finally, by decomposing these formats according to six fundamental characteristics, they predict how each characteristic might promote effective, efficient, and experiential communication goals, in light of distinct message, temporal, and dyadic factors. Ultimately, these combined insights reveal an overarching framework, with characteristic-level propositions grouped into five key themes, that can serve as a platform for academics and managers to develop multiformat communication theory and relationship strategies

    Gravitational Wave Emission from the Single-Degenerate Channel of Type Ia Supernovae

    Full text link
    The thermonuclear explosion of a C/O white dwarf as a Type Ia supernova (SN Ia) generates a kinetic energy comparable to that released by a massive star during a SN II event. Current observations and theoretical models have established that SNe Ia are asymmetric, and therefore--like SNe II--potential sources of gravitational wave (GW) radiation. We perform the first detailed calculations of the GW emission for a SN Ia of any type within the single-degenerate channel. The gravitationally-confined detonation (GCD) mechanism predicts a strongly-polarized GW burst in the frequency band around 1 Hz. Third-generation spaceborne GW observatories currently in planning may be able to detect this predicted signal from SNe Ia at distances up to 1 Mpc. If observable, GWs may offer a direct probe into the first few seconds of the SNe Ia detonation.Comment: 8 pages, 4 figures, Accepted by Physical Review Letter

    Black Rings, Boosted Strings and Gregory-Laflamme

    Full text link
    We investigate the Gregory-Laflamme instability for black strings carrying KK-momentum along the internal direction. We demonstrate a simple kinematical relation between the thresholds of the classical instability for the boosted and static black strings. We also find that Sorkin's critical dimension depends on the internal velocity and in fact disappears for sufficiently large boosts. Our analysis implies the existence of an analogous instability for the five-dimensional black ring of Emparan and Reall. We also use our results for boosted black strings to construct a simple model of the black ring and argue that such rings exist in any number of space-time dimensions.Comment: 26 pages, 6 figure

    Quantum-limited estimation of the axial separation of two incoherent point sources

    Get PDF
    Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly decompose the optical fields into a radial mode basis set to extract the phase information associated with the axial positions of the point sources. We show theoretically and experimentally that, in the limit of a zero axial separation, our scheme allows for reaching the quantum Cram\'er-Rao lower bound and thus can be considered as one of the optimal measurement methods. Unlike other superresolution schemes, this scheme does not require neither activation of fluorophores nor sophisticated stabilization control. Moreover, it is applicable to the localization of a single point source in the axial direction. Our demonstration can be useful to a variety of applications such as far-field fluorescence microscopy.Comment: Comments are welcom

    Colloquium: Understanding Quantum Weak Values: Basics and Applications

    Get PDF
    Since its introduction 25 years ago, the quantum weak value has gradually transitioned from a theoretical curiosity to a practical laboratory tool. While its utility is apparent in the recent explosion of weak value experiments, its interpretation has historically been a subject of confusion. Here a pragmatic introduction to the weak value in terms of measurable quantities is presented, along with an explanation for how it can be determined in the laboratory. Further, its application to three distinct experimental techniques is reviewed. First, as a large interaction parameter it can amplify small signals above technical background noise. Second, as a measurable complex value it enables novel techniques for direct quantum state and geometric phase determination. Third, as a conditioned average of generalized observable eigenvalues it provides a measurable window into nonclassical features of quantum mechanics. In this selective review, a single experimental configuration to discuss and clarify each of these applications is used.Comment: 11 pages, 5 figures, published versio

    A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Get PDF
    Toluene was measured using both a gas chromatographic system (GC), with a flame ionization detector (FID), and a proton transfer reaction-mass spectrometer (PTR-MS) at the AIRMAP atmospheric monitoring station Thompson Farm (THF) in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including alpha- and beta-pinene, camphene, Delta(3)-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of similar to 2 and similar to 30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H(3)O(+), O(2)(+) and NO(+) in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of similar to 0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13 +/- 0.02)x-(0.008 +/- 0.003) ppbv, suggesting a small similar to 13% positive bias in the PTR-MS measurements. The bias corresponded with a similar to 0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1 sigma measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor (\u3c10%). Interferences in the PTRMS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and alpha-pinene oxide were also likely negligible. A relatively large and variable toluene background in the PTR-MS instrument likely drove the measurement bias; however, the precise contribution was difficult to accurately quantify and thus was not corrected for in this analysis. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions (drift tube pressure, temperature and voltage of 2.0 mbar, 45 degrees C and 600V, respectively) under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted

    Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation

    Get PDF
    The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard splitting. The algorithm is motivated by the relationship between topological quantum computers and (2+1)-D topological quantum field theories. Its accuracy is shown to be nontrivial, as the same algorithm, after efficient classical preprocessing, can solve any problem efficiently decidable by a quantum computer. Thus approximating certain Turaev-Viro invariants of manifolds presented by Heegaard splittings is a universal problem for quantum computation. This establishes a novel relation between the task of distinguishing non-homeomorphic 3-manifolds and the power of a general quantum computer.Comment: 4 pages, 3 figure

    Englacial architecture and age-depth constraints across the West Antarctic Ice Sheet

    Get PDF
    he englacial stratigraphic architecture of internal reflection horizons (IRHs) as imaged by ice‐penetrating radar (IPR) across ice sheets reflects the cumulative effects of surface mass balance, basal melt, and ice flow. IRHs, considered isochrones, have typically been traced in interior, slow‐flowing regions. Here, we identify three distinctive IRHs spanning the Institute and Möller catchments that cover 50% of West Antarctica's Weddell Sea Sector and are characterized by a complex system of ice stream tributaries. We place age constraints on IRHs through their intersections with previous geophysical surveys tied to Byrd Ice Core and by age‐depth modeling. We further show where the oldest ice likely exists within the region and that Holocene ice‐dynamic changes were limited to the catchment's lower reaches. The traced IRHs from this study have clear potential to nucleate a wider continental‐scale IRH database for validating ice sheet models
    corecore