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Since its introduction 25 years ago, the quantum weak value has gradually transitioned from a
theoretical curiosity to a practical laboratory tool. While its utility is apparent in the recent explosion
of weak value experiments, its interpretation has historically been a subject of confusion. Here a
pragmatic introduction to the weak value in terms of measurable quantities is presented, along with an
explanation for how it can be determined in the laboratory. Further, its application to three distinct
experimental techniques is reviewed. First, as a large interaction parameter it can amplify small
signals above technical background noise. Second, as a measurable complex value it enables novel
techniques for direct quantum state and geometric phase determination. Third, as a conditioned
average of generalized observable eigenvalues it provides a measurable window into nonclassical
features of quantummechanics. In this selective review, a single experimental configuration to discuss
and clarify each of these applications is used.
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I. INTRODUCTION

Derived in 1988 by Aharonov, Albert, and Vaidman
(Aharonov, Albert, and Vaidman, 1988; Duck, Stevenson,
and Sudarshan, 1989; Ritchie, Story, and Hulet, 1991) as a
“new kind of value for a quantum variable” that appears when

averaging preselected and postselected weak measurements,
the quantum weak value has had an extensive and colorful
theoretical history (Aharonov and Vaidman, 2008; Aharonov,
Popescu, and Tollaksen, 2010; Kofman, Ashhab, and Nori,
2012; Shikano, 2012). Recently, however, the weak value has
stepped into a more public spotlight due to three types of
experimental applications. It is our aim in this brief and
selective review to clarify these three pragmatic roles of the
weak value in experiments.
First, in its role as an evolution parameter, a large weak

value can help to amplify a detector signal and enable the
sensitive estimation of unknown small evolution parameters,
such as beam deflection (Hosten and Kwiat, 2008; Dixon
et al., 2009; Starling et al., 2009; Hogan et al., 2011; Pfeifer
and Fischer, 2011; Turner et al., 2011; Zhou et al., 2012; Zhou
et al., 2013; Jayaswal, Mistura, and Merano, 2014), frequency
shifts (Starling, Dixon, Jordan, and Howell, 2010), phase
shifts (Starling, Dixon, Williams et al., 2010), angular shifts
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(Magana-Loaiza et al., 2013), temporal shifts (Brunner and
Simon, 2010; Strübi and Bruder, 2013), velocity shifts (Viza
et al., 2013), and even temperature shifts (Egan and Stone,
2012). Paradigmatic optical experiments that have used this
technique include the measurement of 1 Å resolution beam
displacements due to the quantum spin Hall effect of light
“without the need for vibration or air-fluctuation isolation”
(Hosten and Kwiat, 2008), an angular mirror rotation of
400 frad due to linear piezomotion of 14 fm using only 63 μW
of power postselected from 3.5 mW total beam power (Dixon
et al., 2009), and a frequency sensitivity of 129 kHz=

ffiffiffiffiffiffi
Hz

p
obtained with 85 μW of power postselected from 2 mW
total beam power (Starling, Dixon, Jordan, and Howell, 2010).
All these results were obtained in modest tabletop labo-
ratory conditions, which was possible since the technique
amplifies the signal above certain types of technical noise
backgrounds (e.g., electronic 1=f noise or vibration noise)
(Starling et al., 2009; Feizpour, Xingxing, and Steinberg,
2011; Jordan, Martínez-Rincón, and Howell, 2014; Knee and
Gauger, 2014).
Second, in its role as a complex number whose real and

imaginary parts can both be measured, the weak value has
encouraged new methods for the direct measurement of
quantum states (Lundeen et al., 2011; Lundeen and
Bamber, 2012, 2014; Salvail et al., 2013; Malik et al.,
2014) and geometric phases (Sjöqvist, 2006; Kobayashi
et al., 2010, 2011). These methods express abstract theoretical
quantities such as a quantum state in terms of complex weak
values, which can then be measured experimentally. Notably,
the real and imaginary components of a quantum state in a
particular basis can be directly determined with minimal
postprocessing using this technique.
Third, in its role as a conditioned average of generalized

observable eigenvalues, the real part of the weak value has
provided a measurable window into nonclassical features of
quantum mechanics. Conditioned averages outside the normal
eigenvalue range have been linked to paradoxes such as
Hardy’s paradox (Aharonov et al., 2002; Lundeen and
Steinberg, 2009; Yokota et al., 2009) and the three-box
paradox (Resch, Lundeen, and Steinberg, 2004), as well as
the violation of generalized Leggett-Garg inequalities that
indicate nonclassical behavior (Palacios-Laloy et al., 2010;
Dressel et al., 2011; Goggin et al., 2011; Suzuki, Iinuma, and
Hofmann, 2012; Groen et al., 2013; Emary, Lambert, and
Nori, 2014). Conditioned averages have also been used to
experimentally measure physically meaningful quantities
including superluminal group velocities in optical fiber
(Brunner et al., 2004), momentum-disturbance relationships
in a two-slit interferometer (Mir et al., 2007), and locally
averaged momentum streamlines passing through a two-slit
interferometer (Kocsis et al., 2011) [i.e., along the energy-
momentum tensor field (Hiley and Callaghan, 2012), or
Poynting vector field (Bliokh et al., 2013; Dressel, Bliokh,
and Nori, 2014)].
This Colloquium is structured as follows. In the next two

sections we explain what a weak value is and how it appears in
the theory quite generally. We then explain how it is possible
to measure both its real and imaginary parts and explore the
three classes of experiments outlined above that make use of
weak values. This approach allows us to address the

importance and utility of weak values in a clear and direct
way without stumbling over interpretations that have histor-
ically tended to obscure these points. Throughout this
Colloquium, we make use of one simple notation for express-
ing theoretical notions, and one experimental setup—a polar-
ized beam passing through a birefringent crystal.

II. WHAT IS A WEAK VALUE?

First introduced by Aharonov, Albert, and Vaidman (1988),
weak values are complex numbers that one can assign to the
powers of a quantum observable operator Â using two states:
an initial state jii, called the preparation or preselection, and a
final state jfi, called the postselection. The nth order weak
value of Â has the form

An
w ¼ hfjÂnjii

hfjii ; (1)

where the order n corresponds to the power of Â that appears
in the expression. In this Colloquium, we clarify how these
peculiar complex expressions appear naturally in laboratory
measurements. To accomplish this goal, we derive them in
terms of measurable detection probabilities. Weak values of
every order appear when we characterize how an intermediate
interaction affects these detection probabilities.
Consider a standard prepare-and-measure experiment. If a

quantum system is prepared in an initial state jii, the
probability of detecting an event corresponding to the final
state jfi is given by the squared modulus of their overlap
P ¼ jhfjiij2. If, however, the initial state is modified by an
intermediate unitary interaction ÛðϵÞ, the detection proba-
bility also changes to Pϵ ¼ jhfji0ij2 ¼ jhfjÛðϵÞjiij2.
In order to calculate the relative change between the

original and the modified probability, we must examine the
unitary operator ÛðϵÞ carefully. In quantum mechanics, any
observable quantity is represented by a Hermitian operator.
Stone’s theorem states that any such Hermitian operator Â can
generate a continuous transformation along a complementary
parameter ϵ via the unitary operator ÛðϵÞ ¼ expð−iϵÂÞ. For
instance, if Â is an angular momentum operator, the unitary
transformation generates rotations through an angle ϵ, or if Â
is a Hamiltonian, the unitary operator generates translations
along a time interval ϵ, and so on. In Aharonov, Albert, and
Vaidman (1988) (and most subsequent appearances of the
weak value) Â is chosen to be an impulsive interaction
Hamiltonian of product form; we return to this special case
in Sec. III.
If ϵ is small enough, or in other words if ÛðϵÞ is “weak,” we

can consider its Taylor series expansion. The detection
probability introduced above can then be written as (shown
here to first order)

Pϵ ¼ jhfjÛðϵÞjiij2 ¼ jhfjð1 − iϵÂþ � � �Þjiij2
¼ Pþ 2ϵImhijfihfjÂjii þOðϵ2Þ: (2)

As long as jii and jfi are not orthogonal (i.e., P ≠ 0), we can
divide both sides of Eq. (2) by P to obtain the relative
correction (shown here to second order):
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Pϵ

P
¼ 1þ 2ϵImAw − ϵ2½ReA2

w − jAwj2� þOðϵ3Þ; (3)

where Aw is the first order weak value and A2
w is the second

order weak value as defined in Eq. (1). Here we arrive at our
operational definition: weak values characterize the relative
correction to a detection probability jhfjiij2 due to a small
intermediate perturbation ÛðϵÞ that results in a modified
detection probability jhfjÛðϵÞjiij2. Although we show the
expansion only to second order here, we emphasize that
the full Taylor series expansion for Pϵ=P is completely
characterized by complex weak values An

w of all orders n
(Di Lorenzo, 2012; Dressel and Jordan, 2012d; Kofman,
Ashhab, and Nori, 2012).
When the higher order terms in the expansion (3) can be

neglected, one has a linear relationship between the proba-
bility correction and the first order weak value, which we call
the weak interaction regime. These terms can be neglected
under two conditions: (a) the relative correction Pϵ=P − 1 is
itself sufficiently small, and (b) ϵImAw is sufficiently large
compared to the sum of higher order corrections (Duck,
Stevenson, and Sudarshan, 1989). When these conditions do
not hold (such as when P → 0), the terms involving higher
order weak values An

w become significant and can no longer be
neglected (Di Lorenzo, 2012). Most experimental work
involving weak values has been done in the weak interaction
regime characterized by the first order weak value, so we limit
our discussion to that regime as well. In Sec. III, we put these
ideas in the context of a real optics experiment and discuss
how one measures weak values in the laboratory.

III. HOW DOES ONE MEASURE A WEAK VALUE?

In general, weak values are complex quantities. In order to
determine a weak value, one must be able to measure both its
real and imaginary parts. Here we use an optical experimental
example to show how one can measure a complex weak value
associated with a polarization observable. Although this
particular example can also be understood using classical
wave mechanics (Brunner et al., 2003; Howell et al., 2010),
the quantum mechanical analysis we provide here has wider
applicability.
Consider the setup shown in Fig. 1(a). A collimated laser

beam is prepared in an initial state jiijψ ii, where jii is an
initial polarization state and jψ ii is the state of the transverse
beam profile. The polarization is prepared through the use of a
quarter-wave plate (QWP) and a half-wave plate (HWP). The
beam then passes through a linear polarizer aligned to a final
polarization state jfi before impacting the charge coupled
device (CCD) image sensor for a camera. Each pixel of the
CCD measures a photon of this beam with a detection
probability given by

P ¼ jhfjiij2jhψfjψ iij2; (4)

where jψfi is the final transverse state postselected by each
pixel. For our purposes, this state corresponds to either a
specific transverse position jψfi ¼ jxi or transverse momen-
tum jψfi ¼ jpi, depending on whether we image the position
or the momentum space onto the CCD [e.g., using a Fourier

lens as shown in Fig. 1(c)]. We refer to this detection
probability P as the “unperturbed” probability.
We now introduce a birefringent crystal between the

preparation wave plates and the postselection polarizer, as
shown in Fig. 1(b). The crystal separates the beam into two
beams with horizontal and vertical polarizations. The trans-
verse displacements depend on the birefringence properties of
the crystal and on the crystal length. We assume that the
crystal is tilted with respect to the incident beam so that each
polarization component is displaced by an equal amount
ϵ ¼ τv, where τ is the time spent inside the crystal and v
is the displacement speed.
The effect of the birefringent crystal can be expressed by a

time evolution operator ÛðτÞ ¼ e−iτĤ=ℏ with an effective
interaction Hamiltonian

Ĥ ¼ vŜ ⊗ p̂: (5)

Here Ŝ ¼ jHihHj − jVihVj is the Stokes polarization operator
that assigns eigenvalues þ1 and −1 to the jHi and jVi
polarizations, respectively, and p̂ is the transverse momentum
operator that generates translations in the transverse position

(a)

(b)

(c)

Collimating 
Lens

HWP QWP

Polariser
CCD

Birefringent
Crystal

Position 
Imaging Lens

Momentum 
Imaging Lens

FIG. 1 (color online). An experiment for illustrating how one can
measure weak values. (a) A Gaussian beam from a single mode
fiber is collimated by a lens and prepared in an initial polarization
state by a quarter-wave plate (QWP) and half-wave plate (HWP).
A polarizer postselects the beam on a final polarization state.
A CCD then measures the position-dependent beam intensity.
(b) A birefringent crystal is inserted between the wave plates and
polarizer to displace different polarizations by a small amount. A
lens images the transverse position on the output face of the
crystal onto the CCD in order to measure the real part of the
polarization weak value as a linear shift in the postselected
intensity. (c) The lens is changed to imaging the far field of the
crystal face onto the CCD as the transverse momentum in order to
determine the imaginary part of the polarization weak value
(details in the text).
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x. This time evolution operator ÛðτÞ correlates the polariza-
tion components of the beam with their transverse position by
translating them in opposite directions. Each pixel of the CCD
then collects a photon with a “perturbed” probability given by

Pϵ ¼ jhfjhψfje−iϵŜ⊗p̂=ℏjiijψ iij2; (6)

which has the form of Eq. (2) with the generic operator Â
replaced by the product operator Ŝ ⊗ p̂.
As a visual example, consider a Gaussian beam

hxjψ ii ¼ ð2πσ2Þ−1=4 exp
�
−

x2

4σ2

�
; (7)

with an initial antidiagonal polarization preparation with a
slight ellipticity:

jii ¼ jHi − eiϕjViffiffiffi
2

p ; ϕ ¼ 0.1; (8)

that passes through a linear postselection polarizer that is
oriented at a small angle (0.2 rad in this example) from the
diagonal state:

jfi ¼ cos
θ

2
jHi þ sin

θ

2
jVi; θ ¼ π

2
− 0.2: (9)

These two nearly orthogonal polarization states are shown
on a band around the equator of the Poincaré sphere in Fig. 2.
Without the crystal present [Fig. 1(a)], the CCD measures the
initial Gaussian intensity profile shown as a dashed line in
Fig. 3(a) with a total postselection probability given by
jhfjiij2 ¼ 0.012. When the crystal is present [Fig. 1(b)],
the orthogonal polarization components become spatially
separated by a displacement ϵ before passing through the
postselection polarizer. The measured profiles for different
crystal lengths are shown as the solid line distributions in
Fig. 3(a). The dashed line distributions show the unperturbed
(but still postselected) profiles for comparison.
In the weak interaction regime, the crystal is short, ϵ is

small, and the two orthogonally polarized beams are displaced
by a small amount before they interfere at the postselection
polarizer. As shown in Sec. II, we can expand the ratio

between the perturbed and unperturbed probabilities to first
order in ϵ and isolate the linear probability correction term:

Pϵ

P
− 1 ≈

2τ

ℏ
ImHw

¼ 2ϵ

ℏ
½ReSwImpw þ ImSwRepw�: (10)

Since the Hamiltonian from Eq. (5) is of product form, its
first order weak value contribution ImHw expands to a
symmetric combination of the real and imaginary parts of
the weak values of polarization Sw ¼ hfjŜjii=hfjii and
momentum pw ¼ hψfjp̂jψ ii=hψfjψ ii. A clever choice of pre-
selection and postselection states therefore allows an experi-
menter to isolate each of these quantities using different
experimental setups (Aharonov, Albert, and Vaidman, 1988;
Jozsa, 2007; Shpitalnik, Gefen, and Romito, 2008).
To illustrate this idea for the polarization weak value, the

procedure for measuring the real part ReSw is shown in
Fig. 1(b). We image the output face of the crystal onto the
CCD so that each pixel corresponds to a postselection of the
transverse position jψfi ¼ jxi. As a result, the momentum
weak value for each pixel becomes

pw ¼ hxjp̂jψ ii
hxjψ ii

¼ −iℏ∂xψ iðxÞ
ψ iðxÞ

¼ iℏ
x
2σ2

; (11)

using the Gaussian profile in Eq. (7).

FIG. 2 (color online). A band around the equator of the Poincaré
sphere showing the initial polarization jii (dot, back of sphere)
from Eq. (8) and postselection polarization jfi (dot, front of
sphere) from Eq. (9). We also indicate the small angles that make
jfi almost orthogonal to jii.
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(a) (b)

FIG. 3 (color online). (a) Comparisons between perturbed
profiles (solid, for various values of beam displacement ϵ) and
a fixed unperturbed profile (dashed, corresponding to P). Note
that both curves represent postselected measurements. (b) The
exact ratio of the two curves (solid) is compared to the first order
approximation (dashed). When ϵ is sufficiently small, the first
order approximation adequately models the quantity Pϵ=P over
most of the profile.

310 Dressel et al.: Colloquium: Understanding quantum weak …

Rev. Mod. Phys., Vol. 86, No. 1, January–March 2014



Since this expression is purely imaginary, Eq. (10) sim-
plifies to

Pϵ

P
≈ 1þ ϵ

x
σ2

ReSw; (12)

effectively isolating the quantity ReSw to first order in ϵ. The
solid curves in Fig. 3(b) illustrate the ratio Pϵ=P as a function
of x for different values of ϵ. When ϵ is sufficiently small, the
expansion of Pϵ=P to first order in Eq. (12) [dashed lines in
Fig. 3(b)] is a good approximation over most of the beam
profile. Pragmatically, this means that one can average the
whole beam profile and still retain a linear correction that is
proportional to ReSw, as done originally by Aharonov, Albert,
and Vaidman (1988).
The analogous procedure for measuring the imaginary part

ImSw is shown in Fig. 1(c). We image the Fourier plane of the
crystal onto the CCD so that each pixel corresponds to a
postselection of the transverse momentum jψfi ¼ jpi. As a
result, the momentum weak value for each pixel becomes
simply

pw ¼ hpjp̂jψ ii
hpjψ ii

¼ phpjψ ii
hpjψ ii

¼ p: (13)

Since this expression is now purely real, Eq. (10) simplifies to

Pϵ

P
≈ 1þ ϵ

2p
ℏ

ImSw; (14)

effectively isolating the quantity ImSw to first order in ϵ. As
with Eq. (12), this first order expansion is a good approxi-
mation over most of the Fourier profile when ϵ is sufficiently
small. Hence, the profile may be similarly averaged and retain
the linear correction proportional to ImSw, as done originally
by Aharonov, Albert, and Vaidman (1988).
Note that we could also isolate the real and imaginary parts

of pw in a similar manner through a judicious choice of
polarization postselection states. More generally, one can use
this technique to isolate weak values of any desired observable
by constructing Hamiltonians in a product form such as
Eq. (5) and cleverly choosing the preselection and postse-
lection of the auxiliary degree of freedom.

IV. HOW CAN WEAK VALUES BE USEFUL?

In Sec. III, we showed how the relative change in post-
selection probability can be completely described by complex
weak value parameters. We also elucidated how the real and
imaginary parts of the first order weak value can be isolated
and therefore measured in the weak interaction regime.
In this section we focus on three main applications of the

first order weak value. First, we show how clever choices of
the initial and final postselected states can result in large weak
values that can be used to sensitively determine unknown
parameters affecting the state evolution. Second, we show
how the complex character of the weak value may be used to
directly determine a quantum state. Third, we show how the
real part of the weak value can be interpreted as a form of
conditioned average pertaining to an observable.

A. Weak value amplification

In precision metrology an experimenter is interested in
estimating a small interaction parameter, such as the trans-
verse beam displacement ϵ ¼ τv due to the crystal in Sec. III.
As the first order approximation of P=Pϵ holds in the weak
interaction regime, the value of ϵ can be directly determined.
We briefly note that the appearance of the joint weak value of
Eq. (10) in a parameter estimation experiment is no accident:
as pointed out by Hofmann (2011), this quantity is the score
used to calculate the Fisher information that determines the
Cramer-Rao bound for the estimation of an unknown param-
eter such as ϵ (Helstrom, 1976; Hofmann et al., 2012; Viza
et al., 2013; Jordan, Martínez-Rincón, and Howell, 2014;
Knee and Gauger, 2014; Pang, Dressel, and Brun, 2014).
Being able to resolve a small ϵ in the presence of back-

ground noise requires the joint weak value factor in Eq. (10) to
be sufficiently large. When this weak value factor is large it
will amplify the linear response. Critically, the initial and final
states for the weak values Sw and pw can be strategically
chosen to produce a large amplification factor. This is the
essence of the technique used in weak value amplification
(Hosten and Kwiat, 2008; Dixon et al., 2009; Starling, Dixon,
Jordan, and Howell, 2010; Starling, Dixon, Williams et al.,
2010; Hogan et al., 2011; Pfeifer and Fischer, 2011; Turner
et al., 2011; Zilberberg, Romito, and Gefen, 2011; Egan and
Stone, 2012; Gorodetski et al., 2012; Kedem, 2012; Puentes,
Hermosa, and Torres, 2012; Zhou et al., 2012, Hayat,
Feizpour, and Steinberg, 2013; Magana-Loaiza et al., 2013;
Shomroni et al., 2013; Strübi and Bruder, 2013; Viza et al.,
2013; Xu et al., 2013; Zhou et al., 2013; Jayaswal, Mistura,
and Merano, 2014).
For a tangible example of how this amplification works for

estimating ϵ, consider the measurement in Fig. 1(b).
Averaging the position recorded at every pixel produces the
centroid

Z
xPϵðxjθÞdx ≈

hxi þ ϵðhx2i=σ2ÞReSw
1þ ϵðhxi=σ2ÞReSw

¼ ϵReSw: (15)

To compute Eq. (15) we used the perturbed conditional
probability PϵðxjθÞ ¼ Pϵðx; θÞ=

R
Pϵðx; θÞdx computed from

Eq. (12) as a function of the pixel position x, and a given
postselection polarization angle θ, as well as the Gaussian
moments hxi ¼ 0 and hx2i ¼ σ2 of the unperturbed beam
profile. Dividing the measured centroid by the (known)
quantity ReSw allows us to determine the small parameter ϵ.
Alternatively, if the CCD measures the Fourier plane as in

Fig. 1(c), then each pixel corresponds to a transverse
momentum. Finding the centroid in this case produces

Z
pPϵðpjθÞdp ≈

hpi þ 2ϵhp2iImSw=ℏ
1þ 2ϵhpiImSw=ℏ

¼ ϵ
ℏ
2σ2

ImSw; (16)

where we used Eq. (14) and the Gaussian moments hpi ¼ 0

and hp2i ¼ ðℏ=2σÞ2 of the unperturbed beam profile.
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The amplification occurs in each case because the factor
ReSw in Eq. (15) or 2hp2iImSw in Eq. (16) can be made large
by clever choices of polarization postselection. For our
example states [Eqs. (8) and (9)], the polarization weak value
is Sw ¼ hfjŜjii=hfjii ≈ 7.5þ 3.2i. Notably, both the real and
imaginary parts of the weak value in this case are larger than 1,
which is the maximum eigenvalue of Ŝ. The plot in Fig. 4(a)
shows how the real and imaginary parts of the weak value vary
with the choice of postselection angle θ.
One cannot obtain such amplification to the sensitivity for

free, however. As the weak value factor Sw becomes large, the
detection probability necessarily decreases, as shown in
Fig. 4(b). Hence, the weak interaction approximation that
assumes 2ϵImðS ⊗ pÞw ≪ jhfjiij2jhψfjψ iij2 for each pixel
will eventually break down and it will be necessary to include
higher order terms in ϵ that have been neglected, spoiling the
linear response (Cho et al., 2010; Geszti, 2010; Shikano and
Hosoya, 2010, 2011; Koike and Tanaka, 2011; Parks and
Gray, 2011; Wu and Li, 2011; Zhu et al., 2011; Di Lorenzo,
2012; Dressel and Jordan, 2012b, 2012d; Kofman, Ashhab,
and Nori, 2012; Nakamura, Nishizawa, and Fujimoto, 2012;
Pan and Matzkin, 2012; Susa, Shikano, and Hosoya, 2012;
Wu and Żukowski, 2012). Moreover, the resulting low
detection rate (i.e., collected beam intensity) makes it difficult
to detect the signal, leading to longer collection times in order
to overcome the noise floor. Indeed, a careful analysis shows
that the signal-to-noise ratio for determining ϵ within a fixed
time duration remains constant as the amplification increases
(Starling et al., 2009; Feizpour, Xingxing, and Steinberg,
2011; Ferrie and Combes, 2014; Jordan, Martínez-Rincón,
and Howell, 2014; Knee and Gauger, 2014)—the signal
gained by increasing the amplification factors in Eq. (15)
or (16) will exactly cancel the uncorrelated shot noise
gained by decreasing the detection rate. The scheme can
also be sensitive to decoherence during the measurement
(Knee et al., 2013).
Nevertheless, there are two distinct advantages to using this

amplification technique: (1) the detector collects a fraction of
the total beam power due to the postselection polarizer yet still
shows similar sensitivity to optimal estimation methods

(Jordan, Martínez-Rincón, and Howell, 2014; Knee and
Gauger, 2014; Pang, Dressel, and Brun, 2014), and (2) the
weakness of the measurement itself makes the amplification
robust against certain types of additional technical noise (such
as 1=f noise) (Starling et al., 2009; Feizpour, Xingxing, and
Steinberg, 2011; Ferrie and Combes, 2014; Jordan, Martínez-
Rincón, and Howell, 2014; Knee and Gauger, 2014). The
former advantage allows less expensive equipment to be used,
while simultaneously enabling the uncollected beam power to
be redirected elsewhere for other purposes (Starling, Dixon,
Jordan, and Howell, 2010; Dressel et al., 2013). The latter
advantage allows one to amplify the signal without also
amplifying certain types of unrelated (but common) technical
noise backgrounds. These two advantages combined are
precisely what has permitted experiments such as Hosten
and Kwiat (2008), Dixon et al. (2009), Starling, Dixon,
Jordan, and Howell (2010), Starling, Dixon, Williams et al.
(2010), Hogan et al. (2011), Pfeifer and Fischer (2011),
Turner et al. (2011), Egan and Stone (2012), Zhou et al.
(2012), Magana-Loaiza et al. (2013), Xu et al. (2013),
Zhou et al. (2013), and Jayaswal, Mistura, and Merano
(2014) to achieve such phenomenal precision with relatively
modest laboratory equipment.

B. Measurable complex value

Since weak values are measurable complex quantities, they
can be used to directly measure other normally inaccessible
complex quantities in the quantum theory that can be
expanded into sums and products of complex weak values,
such as the geometric phase (Sjöqvist, 2006; Kobayashi et al.,
2010; Kobayashi et al., 2011). Most notably, one can
“directly” measure the quantum state itself using this tech-
nique (Lundeen et al., 2011; Massar and Popescu, 2011;
Zilberberg, Romito, and Gefen, 2011; Fischbach and
Freyberger, 2012; Lundeen and Bamber, 2012; Kobayashi,
Nonaka, and Shikano, 2013; Salvail et al., 2013; Wu, 2013;
Malik et al., 2014). Conventionally, a quantum state is
determined through the indirect process of quantum tomog-
raphy (Altepeter, Jeffrey, and Kwiat, 2005). Like its classical
counterpart, quantum tomography involves making a series of
projective measurements in different bases of a quantum state.
This process is indirect in that it involves a time consuming
postprocessing step where the density matrix of the state must
be globally reconstructed through a numerical search over the
alternatives consistent with the measured projective slices.
Propagating experimental error through this reconstruction
step can be problematic, and the computation time can be
prohibitive for determining high-dimensional quantum states,
such as those of orbital angular momentum.
We can bypass the need for such a global reconstruction

step by expanding individual components of a quantum state
directly in terms of measurable weak values. For a simple
example, we determine the complex components of the initial
polarization state jii from Sec. III, as expressed in the
measurement basis fjHi; jVig. This is accomplished by the
insertion of the identity and multiplication by a strategically
chosen constant factor c ¼ hDjHi=hDjii ¼ hDjVi=hDjii,
where the postselection state jDi is unbiased with respect
to both jHi and jVi. With this clever choice the scaled state
has the form
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FIG. 4 (color online). (a) Real (dashed) and imaginary (solid)
parts of the polarization weak value Sw ¼ hfjŜjii=hfjii, with
initial state jii given in Eq. (8) and shown in Fig. 2, and final state
jfi that depends on a varying angle θ. The eigenvalue bounds of
�1 are shown as dotted lines for reference, while the dots indicate
the final state chosen in Eq. (9). (b) The postselection probability
PðθÞ ¼ jhfjiij2 as a function of θ, showing how a large weak
value corresponds to a small detection probability. The inset
shows the small probability region enlarged for clarity, while the
dots similarly indicate the final state in Eq. (9).
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cjii ¼ hDjHihHjii
hDjii|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Hw

jHi þ hDjVihVjii
hDjii|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Vw

jVi: (17)

That is, each complex component of the scaled state cjii can
be directly measured as a complex first order weak value.
After determining these complex components experimentally,
the state can be subsequently renormalized to eliminate the
constant c up to a global phase.
Furthermore, we can write the projections as jHihHj ¼

ð1̂þ ŜÞ=2 and jVihVj ¼ ð1̂ − ŜÞ=2, so we can rewrite the
required weak values Hw ¼ ð1þ SwÞ=2 and Vw ¼
ð1 − SwÞ=2 in terms of the single polarization weak value
Sw. We showed earlier how to isolate and measure both the
real and imaginary parts of this polarization weak value. Thus,
we can completely determine the state jii after the polarization
weak value Sw has been measured using the special post-
selection jDi.
The primary benefit of this direct state estimation approach

is that minimal postprocessing (and thus minimal experimen-
tal error propagation) is required to reconstruct individual state
components from the experimental data. The real and imagi-
nary parts of each pure state component in a desired basis
directly appear in the linear response of a measurement device
up to appropriate scaling factors. Mixed states can also be
measured in a similar way by scanning the postselection
across a mutually unbiased basis, which will determine the
Dirac distribution for the state instead (Lundeen and Bamber,
2012; Lundeen and Bamber, 2013; Salvail et al., 2013); this
distribution is related to the density matrix via a Fourier
transform.
The downside of this approach is that the denominator

hDjii in the constant c cannot become too small or the linear
approximation used to measure Sw will break down
(Haapasalo, Lahti, and Schultz, 2011), causing estimation
errors (Maccone and Rusconi, 2014). This restriction limits
the generality of the technique for faithfully estimating a truly
unknown state. Furthermore, improperly calibrating the weak
interaction can introduce unitary errors or produce additional
decoherence that does not appear in projective tomography
techniques. Nevertheless, the direct measurement technique
can be useful for determining the components of most states.

C. Conditioned average

As our final example of the utility of weak values, we show
that the real part of a weak value can be interpreted as a form
of conditioned average associated with an observable. To
show this we first consider how each pixel records polariza-
tion information in the absence of postselection. After sum-
ming over all complementary postselections jfi in the
perturbed probability Pϵðx; fÞ in Eq. (6), we can express
the total perturbed pixel probability as

PϵðxÞ ¼
X
f

jhfjhxje−iϵŜ⊗p̂=ℏjiijψ iij2 ¼ hijP̂xjii; (18)

in terms of a probability operator

P̂x ¼ jhx − ϵjψ iij2jHihHj þ jhxþ ϵjψ iij2jVihVj
¼ jhx − ϵŜjψ iij2: (19)

The second line is a formal way of writing the probability
operator more compactly in terms of the spectral representa-
tion of Ŝ. This formal expression also supports the intuition
that P̂x indicates that the crystal interaction shifts the initial
profile jhxjψ iij2 of the beam by an amount that depends on the
polarization.
An experimenter can then assign a value of ðx=ϵÞ to each

pixel x and average those values over the perturbed profile in
Eq. (18) to obtain the average polarization

Z
x
ϵ
PϵðxÞdx ¼ hijŜjii (20)

for any preparation state jii. The values ðx=ϵÞ assigned to each
pixel act as generalized eigenvalues for the polarization
operator Ŝ (Dressel, Agarwal, and Jordan, 2010; Dressel
and Jordan, 2012a, 2012c). An experimenter must assign
these values in place of the standard polarization eigenvalues
of �1 because the pixels are only weakly correlated with the
polarization. Although the values ðx=ϵÞ generally lie well
outside the eigenvalue range of Ŝ, their experimental average
in Eq. (20) always produces a sensible average polarization.
The state independence of this procedure can be empha-

sized by noting that the assignment of the generalized
eigenvalues ðx=ϵÞ formally produces an operator identity,

Z
x
ϵ
P̂xdx ¼ Ŝ (21)

in terms of the probability operators P̂x in Eq. (19) that
correspond to each measured pixel. This identity guarantees
that the experimenter can faithfully reconstruct information
about the observable Ŝ for any unknown state by properly
weighting the probabilities for measuring each CCD pixel. In
the special case of a projective measurement, the probability
operators will be the spectral projections for Ŝ and the
assigned values will be the eigenvalues of Ŝ, which makes
Eq. (21) a natural generalization of the spectral expansion of Ŝ
to a generalized measuring apparatus.
It is worth noting that since there are more pixels than

polarization eigenvalues, one can form an operator identity
such as Eq. (21) in many different ways by assigning different
values αðxÞ to the pixel probabilities. In such a case, the
information redundancy in the pixel probabilities gives the
freedom to choose appropriate values that statistically con-
verge more rapidly to the desired mean (Dressel, Agarwal,
and Jordan, 2010; Dressel and Jordan, 2012a, 2012c). For
our purposes here, however, we use the simplest generic
choice αðxÞ ¼ x=ϵ.
Including the effect of the postselection polarizer jfi

changes this general result. The added polarizer conditions
the total pixel probability of Eq. (18). After assigning the same
generalized polarization eigenvalues x=ϵ to each pixel and
averaging these values over the conditioned profile, an
experimenter will find the conditioned average
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Z
x
ϵ
PϵðxjfÞdx ¼ Re

hfjŜjii
hfjii þOðϵ2Þ: (22)

As shown in Eq. (15) this conditioned average of generalized
polarization eigenvalues approximates the real part of a weak
value for small ϵ in an experimentally meaningful way.
Importantly, even when ϵ is not small the full conditioned

average of generalized eigenvalues (22) will smoothly inter-
polate between the weak value approximation and a classical
conditioned average of polarization. In Fig. 5 we illustrate this
interpolation for different values of ϵ. This smooth corre-
spondence is essential for associating the experimental aver-
age Eq. (22) to the polarization Ŝ in any meaningful way.
Indeed, we have shown (Dressel and Jordan, 2012b, 2012d)
that this interpolation exactly describes how the initial
polarization state decoheres into a classical polarization state
with increasing measurement strength. Moreover, this tech-
nique of constructing conditioned averages of generalized
eigenvalues works quite generally for other detectors (Pryde
et al., 2005; Romito, Gefen, and Blanter, 2008; Kedem and
Vaidman, 2010; Dressel et al., 2011; Goggin et al., 2011;
Dressel, Choi, and Jordan, 2012; Weston et al., 2013;
Zilberberg et al., 2013; Silva et al., 2014) and produces
similar interpolations between a classical conditioned average
and the real part of a weak value.
The link between weak values and conditioned averages

has been used to address several quantum paradoxes, such
as Hardy’s paradox (Aharonov et al., 2002; Lundeen
and Steinberg, 2009; Yokota et al., 2009) and the three-
box paradox (Resch, Lundeen, and Steinberg, 2004).
Anomalously large weak values provide a measurable window
into the inner workings of these paradoxes by indicating when
quantum observables cannot be understood in any classical
way as properties related to their eigenvalues. Similarly,
anomalously large weak values have been linked to violations
of generalized Leggett-Garg inequalities (Williams and
Jordan, 2008; Palacios-Laloy et al., 2010; Dressel et al.,

2011; Goggin et al., 2011; Suzuki, Iinuma, and Hofmann,
2012; Groen et al., 2013; Emary, Lambert, and Nori, 2014)
that indicate nonclassical (or invasive) behavior in measure-
ment sequences. This link has also been exploited to
provide an experimental method for determining physically
meaningful conditioned quantities, such as group velocities
in optical fibers (Brunner et al., 2004) or the momentum-
disturbance relationships for a two-slit interferometer
(Mir et al., 2007).
A particularly notable experimental demonstration of the

connection between weak values and physically meaningful
conditioned averages is the measurement of the locally
averaged momentum streamlines pBðxÞ passing through a
two-slit interferometer performed by Kocsis et al. (2011)
using the weak value identity

Re
hxjp̂jψ ii
hxjψ ii

¼ ∂xΦðxÞ ¼ pBðxÞ; (23)

where hxjψ ii ¼ jhxjψ iij exp½iΦðxÞ=ℏ� is the polar decompo-
sition of the initial transverse profile. This phase gradient has
appeared historically in Madelung’s hydrodynamic approach
to quantum mechanics (Madelung, 1926, 1927), Bohm’s
causal model (Bohm, 1952a, 1952b; Wiseman, 2007;
Traversa et al., 2013), the momentum part of the local
energy-momentum tensor (Hiley and Callaghan, 2012), and
even the Poynting vector field of classical electrodynamics
(Bliokh et al., 2013; Dressel, Bliokh, and Nori, 2014).
Importantly, the weak value connection provides this quantity
with an experimentally meaningful definition as a weakly
measured conditioned average.

V. CONCLUSIONS

In this Colloquium we explored how the quantum weak
value naturally appears in laboratory situations. We opera-
tionally defined weak values as complex parameters that
completely characterize the relative corrections to detection
probabilities that are caused by an intermediate interaction.
When the interaction is sufficiently weak, these relative
corrections can be well approximated by first order weak
values.
Using an optical example of a polarized beam passing

through a birefringent crystal, we showed how to use a
product interaction to isolate and measure both the real and
imaginary parts of first order weak values. This example
allowed us to discuss three distinct roles that the first order
weak value has played in recent experiments.
First, we showed how a large weak value can be used to

amplify a signal used to sensitively estimate an unknown
interaction parameter in the (linear) weak interaction regime.
Although the signal-to-noise ratio remains constant from this
amplification due to a corresponding reduction in detection
probability, the technique allows one to amplify the signal
above other technical noise backgrounds using fairly modest
laboratory equipment.
Second, we showed that since the first order weak value is a

measurable complex parameter, it can be used to experimen-
tally determine other complex theoretical quantities. Notably,
we showed how the components of a pure quantum state may
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FIG. 5 (color online). Conditioned average (22) of generalized
polarization eigenvalues x=ϵ for various values of the crystal
length ϵ, using the beam profile illustrated in Fig. 2. For large ϵ
the average is a classical conditioned average constrained to the
eigenvalue range (dotted lines). For sufficiently small ϵ, however,
the conditioned average (solid lines) approximates the real part
(dashed lines) of the polarization weak value in Fig. 4.
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be directly determined up to a global phase by measuring
carefully chosen weak values.
Third, we discussed the relationship between the real part of

a first order weak value and a conditioned average for an
observable. By conditionally averaging generalized eigenval-
ues for the observable, we showed that one obtains an average
that smoothly interpolates between a classical conditioned
average and a weak value as the interaction strength changes.
We have emphasized the generality of the quantum weak

value as a tool for describing experiments. Because of this
generality, we anticipate that many more applications of the
weak value will be found in time. We hope this Colloquium
will encourage further exploration along these lines.
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