62 research outputs found

    Sequencing the Black Aspergilli species complex

    Get PDF
    The ~15 members of the Aspergillus section Nigri species complex (the "Black Aspergilli") are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as food processing and spoilage agents and agricultural toxigens. Despite their utility and ubiquity, the morphological and metabolic distinctiveness of the complex's members, and thus their taxonomy, is poorly defined. We are using short read pyrosequencing technology (Roche/454 and Illumina/Solexa) to rapidly scale up genomic and transcriptomic analysis of this species complex. To date we predict 11197 genes in Aspergillus niger, 11624 genes in A. carbonarius, and 10845 genes in A. aculeatus. A. aculeatus is our most recent genome, and was assembled primarily from 454-sequenced reads and annotated with the aid of >2 million 454 ESTs and >300 million Solexa ESTs. To most effectively deploy these very large numbers of ESTs we developed 2 novel methods for clustering the ESTs into assemblies. We have also developed a pipeline to propose orthologies and paralogies among genes in the species complex. In the near future we will apply these methods to additional species of Black Aspergilli that are currently in our sequencing pipeline

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Evolutionary genomics of a cold-adapted diatom: Fragilariopsis cylindrus

    Get PDF
    The Southern Ocean houses a diverse and productive community of organisms1, 2. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice3, 4, 5, 6, 7. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus8, 9, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean

    Appunti sul movimento antifascista sloveno della Venezia Giulia

    Get PDF
    <div><p>The class <em>Dothideomycetes</em> is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The <em>Dothideomycetes</em> most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several <em>Dothideomycetes</em> contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 <em>Dothideomycetes</em> offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the <em>Dothideomycetes</em>, the <em>Capnodiales</em> and <em>Pleosporales</em>, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most <em>Dothideomycetes</em> and upregulated during infection in <em>L. maculans</em>, suggesting a possible function in response to oxidative stress.</p> </div

    Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens.

    Get PDF
    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence
    corecore