83 research outputs found

    The 1990 update to strategy for exploration of the inner planets

    Get PDF
    The Committee on Planetary and Lunar Exploration (COMPLEX) has undertaken to review and revise the 1978 report Strategy for Exploration of the Inner Planets, 1977-1987. The committee has found the 1978 report to be generally still pertinent. COMPLEX therefore issues its new report in the form of an update. The committee reaffirms the basic objectives for exploration of the planets: to determine the present state of the planets and their satellites, to understand the processes active now and at the origin of the solar system, and to understand planetary evolution, including appearance of life and its relation to the chemical history of the solar system

    Mass fractionation in hydrodynamic escape

    Full text link
    We show that mass fractionation occurs during the course of hydrodynamic escape of gases from the atmosphere of an inner planet. Light gases escape more readily than heavy gases. The resultant fractionation as a function of mass yields a linear or concave downward plot in a graph of logarithm of remaining inventory against atomic mass. An episode of hydrodynamic escape early in the history of Mars could have resulted in the mass-dependent depletion of the noble gases observed in the Martian atmosphere, if Mars was initially hydrogen rich. Similarly, a hydrodynamic escape episode early in Earth's history could have yielded a mass-dependent fractionation of the xenon isotopes. The required hydrodynamic escape fluxes and total amounts of hydrogen lost from the planets in these episodes are large, but not impossibly so. The theory of the mass fractionation process is simple, but more work will be needed to put together an internally consistent scenario that reconciles a range of data from different planets.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26796/1/0000352.pd

    Presolar Grains from Novae: Evidence from Neon and Helium Isotopes in Comet Dust Collections

    Full text link
    Presolar grains in meteorites and interplanetary dust particles (IDPs) carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable 3He in these particles indicates space exposure to solar wind (SW) irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured 4He/20Ne, 20Ne/22Ne, 21Ne/22Ne and 20Ne/21Ne isotope ratios, and a low upper limit on 3He/4He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low 4He/20Ne and high 20Ne/22Ne ratios are the most diagnostic, reflecting the large predicted 20Ne abundances in the ejecta of such novae. The correspondence of measured Ne and He compositions in cometary matter with theoretical predictions is evidence for the presence of presolar grains from novae in the early solar system.Comment: As appeared in the Astrophysical Journa

    Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    Get PDF
    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs

    Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    Get PDF
    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks

    Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102173/1/wong_readme.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102173/2/wong2013_SM_v4b.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102173/3/grl51166.pd

    Semiquantitative Analysis of Clinical Heat Stress in Clostridium difficile Strain 630 Using a GeLC/MS Workflow with emPAI Quantitation.

    Get PDF
    <div><p><i>Clostridium difficile</i> is considered to be the most frequent cause of infectious bacterial diarrhoea in hospitals worldwide yet its adaptive ability remains relatively uncharacterised. Here, we used GeLC/MS and the exponentially modified protein abundance index (emPAI) calculation to determine proteomic changes in response to a clinically relevant heat stress. Reproducibility between both biological and technical replicates was good, and a 37°C proteome of 224 proteins was complemented by a 41°C proteome of 202 proteins at a 1% false discovery rate. Overall, 236 <i>C. difficile</i> proteins were identified and functionally categorised, of which 178 were available for comparative purposes. A total of 65 proteins (37%) were modulated by 1.5-fold or more at 41°C compared to 37°C and we noted changes in the majority of proteins associated with amino acid metabolism, including upregulation of the reductive branch of the leucine fermentation pathway. Motility was reduced at 41°C as evidenced by a 2.7 fold decrease in the flagellar filament protein, FliC, and a global increase in proteins associated with detoxification and adaptation to atypical conditions was observed, concomitant with decreases in proteins mediating transcriptional elongation and the initiation of protein synthesis. Trigger factor was down regulated by almost 5-fold. We propose that under heat stress, titration of the GroESL and dnaJK/grpE chaperones by misfolded proteins will, in the absence of trigger factor, prevent nascent chains from emerging efficiently from the ribosome causing translational stalling and also an increase in secretion. The current work has thus allowed development of a heat stress model for the key cellular processes of protein folding and export.</p></div

    4. Building of a Habitable Planet

    Full text link

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
    corecore