77 research outputs found

    Origin of secondary sulfate minerals on active andesitic stratovolcanoes

    Get PDF
    Sulfate minerals in altered rocks on the upper flanks and summits of active andesitic stratovolcanoes result from multiple processes. The origin of these sulfates at five active volcanoes, Citlalte´petl (Mexico), and Mount Adams, Hood, Rainier, and Shasta (Cascade Range, USA), was investigated using field observations, petrography, mineralogy, chemical modeling, and stable-isotope data. The four general groups of sulfate minerals identified are: (1) alunite group, (2) jarosite group, (3) readily soluble Fe- and Al-hydroxysulfates, and (4) simple alkaline-earth sulfates such as anhydrite, gypsum, and barite. Generalized assemblages of spatially associated secondary minerals were recognized: (1) alunite+silica±pyrite±kaolinite±gypsum±sulfur, (2) jarosite+alunite+silica; (3) jarosite+smectite+silica±pyrite, (4) Fe- and Al-hydroxysulfates+silica, and (5) simple sulfates+silica±Al-hydroxysulfates±alunite. Isotopic data verify that all sulfate and sulfide minerals and their associated alteration assemblages result largely from the introduction of sulfur-bearing magmatic gases into meteoric water in the upper levels of the volcanoes. The sulfur and oxygen isotopic data for all minerals indicate the general mixing of aqueous sulfate derived from deep (largely disproportionation of SO2 in magmatic vapor) and shallow (oxidation of pyrite or H2S) sources. The hydrogen and oxygen isotopic data of alunite indicate the mixing of magmatic and meteoric fluids. Some alunite-group minerals, along with kaolinite, formed from sulfuric acid created by the disproportionation of SO2 in a condensing magmatic vapor. Such alunite, observed only in those volcanoes whose interiors are exposed by erosion or edifice collapse, may have δ34S values that reflect equilibrium (350±50 °C) between aqueous sulfate and H2S. Alunite with δ34S values indicating disequilibrium between parent aqueous sulfate and H2S may form from aqueous sulfate created in higher level low-temperature environments in which SO2 is scrubbed out by groundwater or where H2S is oxidized. Jarosite-group minerals associated with smectite in only slightly altered volcanic rock are formed largely from aqueous sulfate derived from supergene oxidation of hydrothermal pyrite above the water table. Soluble Al- and Fehydroxysulfates form in low-pH surface environments, especially around fumaroles, and from the oxidation of hydrothermal pyrite. Anhydrite/gypsum, often associated with native sulfur and occasionally with small amounts of barite, also commonly form around fumaroles. Some occurrences of anhydrite/gypsum may be secondary, derived from the dissolution and reprecipitation of soluble sulfate. Edifice collapse may also reveal deep veins of anhydrite/gypsumFbarite that formed from the mixing of saline fluids with magmatic sulfate and dilute meteoric water. Alteration along structures associated with bot

    Sour gas hydrothermal jarosite: ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift

    Get PDF
    As many as 29 mining districts along the Rio Grande Rift in southern New Mexico contain Rio Grande Rift-type (RGR) deposits consisting of fluorite–barite±sulfide–jarosite, and additional RGR deposits occur to the south in the Basin and Range province near Chihuahua, Mexico. Jarosite occurs in many of these deposits as a late-stage hydrothermal mineral coprecipitated with fluorite, or in veinlets that crosscut barite. In these deposits, many of which are limestone-hosted, jarosite is followed by natrojarosite and is nested within silicified or argillized wallrock and a sequence of fluorite–bariteFsulfide and late hematite– gypsum. These deposits range in age from ~10 to 0.4 Ma on the basis of 40Ar/39Ar dating of jarosite. There is a crude north– south distribution of ages, with older deposits concentrated toward the south. Recent deposits also occur in the south, but are confined to the central axis of the rift and are associated with modern geothermal systems. The duration of hydrothermal jarosite mineralization in one of the deposits was approximately 1.0 my. Most Δ18OSO4 –OH values indicate that jarosite precipitated between 80 and 240 °C, which is consistent with the range of filling temperatures of fluid inclusions in late fluorite throughout the rift, and in jarosite (180 °C) from Pen˜a Blanca, Chihuahua, Mexico. These temperatures, along with mineral occurrence, require that the jarosite have had a hydrothermal origin in a shallow steam-heated environment wherein the low pH necessary for the precipitation of jarosite was achieved by the oxidation of H2S derived from deeper hydrothermal fluids. The jarosite also has high trace-element contents (notably As and F), and the jarosite parental fluids have calculated isotopic signatures similar to those of modern geothermal waters along the southern rift; isotopic values range from those typical of meteoric water to those of deep brine that has been shown to form from the dissolution of Permian evaporite by deeply circulating meteoric water. Jarosite δ34S values range from ‒24%◦to 5%◦, overlapping the values for barite and gypsum at the high end of the range and for sulfides at the low end. Most δ34S values for barite are 10.6%◦ to 13.1%◦ , and many δ34S values for gypsum range from 13.1%◦ to 13.9%◦ indicating that a component of aqueous sulfate was derived from Permian evaporites (δ34S=12±2%◦). The requisite H2SO4 for jarosite formation was derived from oxidation of H2S which was likely largely sour gas derived from the thermochemical reduction of Permian sulfate. The low δ34S values for the precursor H2S probably resulted from exchange deeper in the basin with the more abundant Permian SO4 2‒ at ~150 to 200 °C. Jarosite formed at shallow levels after the pH buffering capacity of the host rock (typically limestone) was neutralized by precipitation of earlier minerals. Some limestone-hosted deposits contai

    Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Get PDF
    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Waterchemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures

    Stable Hydrogen Isotope Analysis of Bat Hair as Evidence for Seasonal Molt and Long-Distance Migration

    Get PDF
    Although hoary bats (Lasiurus cinereus) are presumed to be migratory and capable of long-distance dispersal, traditional marking techniques have failed to provide direct evidence of migratory movements by individuals. We measured the stable hydrogen isotope ratios of bat hair (∂Dh) and determined how these values relate to stable hydrogen isotope ratios of precipitation (∂Dp). Our results indicate that the major assumptions of stable isotope migration studies hold true for hoary bats and that the methodology provides a viable means of determining their migratory movements. We present evidence that a single annual molt occurs in L. cinereus prior to migration and that there is a strong relationship between ∂Dh and ∂Dp during the molt period. This presumably reflects the incorporation of local ∂Dp into newly grown hair. Furthermore, we present evidence that individual hoary bats are capable of traveling distances in excess of 2,000 km and that hair is grown at a wide range of latitudes and elevations. Stable hydrogen isotope analysis offers a promising new tool for the study of bat migration

    Stable Hydrogen Isotope Analysis of Bat Hair as Evidence for Seasonal Molt and Long-Distance Migration

    Get PDF
    Although hoary bats (Lasiurus cinereus) are presumed to be migratory and capable of long-distance dispersal, traditional marking techniques have failed to provide direct evidence of migratory movements by individuals. We measured the stable hydrogen isotope ratios of bat hair (∂Dh) and determined how these values relate to stable hydrogen isotope ratios of precipitation (∂Dp). Our results indicate that the major assumptions of stable isotope migration studies hold true for hoary bats and that the methodology provides a viable means of determining their migratory movements. We present evidence that a single annual molt occurs in L. cinereus prior to migration and that there is a strong relationship between ∂Dh and ∂Dp during the molt period. This presumably reflects the incorporation of local ∂Dp into newly grown hair. Furthermore, we present evidence that individual hoary bats are capable of traveling distances in excess of 2,000 km and that hair is grown at a wide range of latitudes and elevations. Stable hydrogen isotope analysis offers a promising new tool for the study of bat migration

    Gold deposition by sulfidation of ferrous Fe in the lacustrine sediments of the Pueblo Viejo district (Dominican Republic): The effect of Fe-C-S diagenesis on later hydrothermal mineralization in a Maar-Diatreme complex

    Full text link
    The Pueblo Viejo district, located in the Cordillera Central of the Dominican Republic, contains large Au-Ag deposits associated with acid-sulfate alteration within spilites, conglomerates and carbonaceous sedimentary rocks that were deposited in a maar-diatreme complex. Much of the Au mineralization occurs in pyritic, carbonaceous siltstones of the Pueblo Viejo Maar-Diatreme Member of the Cretaceous Los Ranchos Formation. Pyrite is the only Fe-bearing phase in mineralized rock, whereas siderite is the dominant Fe-bearing phase in siltstones distal to mineralization. Disseminated pyrite occurs as framboids, cubes, pyritohedra, concretions and cement. Early framboids occur throughout the district. Au occurs as inclusions in later non-framboid disseminated pyrite (NFDP); an occurrence that is interpreted to be indicative of contemporaneous deposition. Pyrite framboids exhibit a wide range of [delta]34S-values (-17.5 to +4.8[per mille sign]) and are interpreted to have formed during biogenic reduction of pore-water sulfate. The NFDP yield restricted [delta]34S-values (, s = +/-2.4[per mille sign], n = 43) similar to those obtained from later vein pyrite (, s = +/-1.5[per mille sign], n = 12). Alunite and barite have [delta]34S-values ranging from +18.8 to +21.6[per mille sign]. The interpretation that the NFDP, vein pyrite, alunite and barite, and possibly even the framboidal pyrite share a common source of igneous sulfur is supported by the [delta]34S data. Siderite occurs as concretions and cement, contains abundant Mg (Fe0.75Mg0.19Mn0.03Ca0.02CO3) and has [delta]13C- and [delta]18O-values ranging from -2.5 to +1.1%. and +14.6 to +19.5[per mille sign], respectively. These data are consistent with the interpretation that the siderite formed in lacustrine sediments and that the carbonate in the siderite is probably methanogenic, although contributions from oxidation of organic matter during biogenic sulfate reduction, thermal decarboxylation of organic matter, or magmatic vapor cannot be ruled out.Disseminated Au mineralization in the sedimentary rocks formed when a hydrothermal fluid encountered reactive Fe2+ in diagenetic siderite. The ensuing pyrite deposition consumed H2S and destabilized the Au (HS)-2 complex, leading to precipitation of Au. The capacity of the sedimentary rocks to consume H2S and precipitate Au was controlled by the amount of non-pyrite Fe present as siderite. The abundance of siderite was controlled by the extent of pyrite formation during diagenesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29846/1/0000193.pd

    Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Get PDF
    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet
    • …
    corecore