652 research outputs found

    Modeling Vortex Swarming In Daphnia

    Get PDF
    Based on experimental observations in Daphnia, we introduce an agent-based model for the motion of single and swarms of animals. Each agent is described by a stochastic equation that also considers the conditions for active biological motion. An environmental potential further reflects local conditions for Daphnia, such as attraction to light sources. This model is sufficient to describe the observed cycling behavior of single Daphnia. To simulate vortex swarming of many Daphnia, i.e. the collective rotation of the swarm in one direction, we extend the model by considering avoidance of collisions. Two different ansatzes to model such a behavior are developed and compared. By means of computer simulations of a multi-agent system we show that local avoidance—as a special form of asymmetric repulsion between animals—leads to the emergence of a vortex swarm. The transition from uncorrelated rotation of single agents to the vortex swarming as a function of the swarm size is investigated. Eventually, some evidence of avoidance behavior in Daphnia is provided by comparing experimental and simulation results for two animal

    A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation

    Get PDF
    AbstractHypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and the assumption that there is a disordered induction pattern if the Xylanase regulator 1 is de-regulated in Hypocrea

    Translocator protein in late stage Alzheimer\u27s disease and Dementia with Lewy bodies brains

    Get PDF
    OBJECTIVE: Increased translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), in glial cells of the brain has been used as a neuroinflammation marker in the early and middle stages of neurodegenerative diseases, such as Alzheimer\u27s disease (AD) and Dementia with Lewy Bodies (DLB). In this study, we investigated the changes in TSPO density with respect to late stage AD and DLB. METHODS: TSPO density was measured in multiple regions of postmortem human brains in 20 different cases: seven late stage AD cases (Braak amyloid average: C; Braak tangle average: VI; Aged 74-88, mean: 83 ± 5 years), five DLB cases (Braak amyloid average: C; Braak tangle average: V; Aged 79-91, mean: 84 ± 4 years), and eight age-matched normal control cases (3 males, 5 females: aged 77-92 years; mean: 87 ± 6 years). Measurements were taken by quantitative autoradiography using [ RESULTS: No significant changes were found in TSPO density of the frontal cortex, striatum, thalamus, or red nucleus of the AD and DLB brains. A significant reduction in TSPO density was found in the substantia nigra (SN) of the AD and DLB brains compared to that of age-matched healthy controls. INTERPRETATION: This distinct pattern of TSPO density change in late stage AD and DLB cases may imply the occurrence of microglia dystrophy in late stage neurodegeneration. Furthermore, TSPO may not only be a microglia activation marker in early stage AD and DLB, but TSPO may also be used to monitor microglia dysfunction in the late stage of these diseases

    Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    Get PDF
    [(18)F]FluorTriopride ([(18)F]FTP) is a dopamine D(3)-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [(18)F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [(18)F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [(18)F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [(18)F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination

    TMEM97 and PGRMC1 do not mediate sigma-2 ligand-induced cell death

    Get PDF
    Abstract Sigma-2 receptors have been implicated in both tumor proliferation and neurodegenerative diseases. Recently the sigma-2 receptor was identified as transmembrane protein 97 (TMEM97). Progesterone receptor membrane component 1 (PGRMC1) was also recently reported to form a complex with TMEM97 and the low density lipoprotein (LDL) receptor, and this trimeric complex is responsible for the rapid internalization of LDL. Sigma-2 receptor ligands with various structures have been shown to induce cell death in cancer cells. In the current study, we examined the role of TMEM97 and PGRMC1 in mediating sigma-2 ligand-induced cell death. Cell viability and caspase-3 assays were performed in control, TMEM97 knockout (KO), PGRMC1 KO, and TMEM97/PGRMC1 double KO cell lines treated with several sigma-2 ligands. The data showed that knockout of TMEM97, PGRMC1, or both did not affect the concentrations of sigma-2 ligands that induced 50% of cell death (EC50), suggesting that cytotoxic effects of these compounds are not mediated by TMEM97 or PGRMC1. Sigma-1 receptor ligands, (+)-pentazocine and NE-100, did not block sigma-2 ligand cytotoxicity, suggesting that sigma-1 receptor was not responsible for sigma-2 ligand cytotoxicity. We also examined whether the alternative, residual binding site (RBS) of 1,3-Di-o-tolylguanidine (DTG) could be responsible for sigma-2 ligand cytotoxicity. Our data showed that the binding affinities (K i) of sigma-2 ligands on the DTG RBS did not correlate with the cytotoxicity potency (EC50) of these ligands, suggesting that the DTG RBS was not fully responsible for sigma-2 ligand cytotoxicity. In addition, we showed that knocking out TMEM97, PGRMC1, or both reduced the initial internalization rate of a sigma-2 fluorescent ligand, SW120. However, concentrations of internalized SW120 became identical later in the control and knockout cells. These data suggest that the initial internalization process of sigma-2 ligands does not appear to mediate the cell-killing effect of sigma-2 ligands. In summary, we have provided evidence that sigma-2 receptor/TMEM97 and PGRMC1 do not mediate sigma-2 ligand cytotoxicity. Our work will facilitate elucidating mechanisms of sigma-2 ligand cytotoxicity

    Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors

    Get PDF
    The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these compo- nents form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signal- ing, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unex- pected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic pheno- type. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the bal- ance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernu- merary DRG sensory neurons in a wild-type background, and can rescue the sensory neu- ron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10 (baz1) protein\u2019s unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lat- eral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates
    corecore