2,554 research outputs found

    Mutagenesis of a cAMP Response Element within the Latency-Associated Transcript Promoter of HSV-1 Reduces Adrenergic Reactivation

    Get PDF
    AbstractMutagenesis of a cyclic AMP response element (CRE) within the LAT promoter of HSV-1 reduces the ability of LAT expression to be induced in transient assays, but has only a minimal impact on reactivation of the virus inin vitrosystems. Here we show that a CRE mutation results in a significant reduction of adrenergically induced reactivationin vivoin the rabbit eye model. Spontaneous reactivation frequencies were also reduced. In addition, we demonstrate that this mutation has no effect on the amount of LAT expressed during latency when compared with the parent, 17syn+, and the rescuant. These results indicate a greater effect of CRE on induced reactivationin vivothan inin vitrosystems, but also suggest that the CRE in the LAT promoter is not autonomous in conducting the reactivation signal

    Changes in women’s facial skin color over the ovulatory cycle are not detectable by the human visual system

    Get PDF
    Human ovulation is not advertised, as it is in several primate species, by conspicuous sexual swellings. However, there is increasing evidence that the attractiveness of women’s body odor, voice, and facial appearance peak during the fertile phase of their ovulatory cycle. Cycle effects on facial attractiveness may be underpinned by changes in facial skin color, but it is not clear if skin color varies cyclically in humans or if any changes are detectable. To test these questions we photographed women daily for at least one cycle. Changes in facial skin redness and luminance were then quantified by mapping the digital images to human long, medium, and shortwave visual receptors. We find cyclic variation in skin redness, but not luminance. Redness decreases rapidly after menstrual onset, increases in the days before ovulation, and remains high through the luteal phase. However, we also show that this variation is unlikely to be detectable by the human visual system. We conclude that changes in skin color are not responsible for the effects of the ovulatory cycle on women’s attractiveness

    A Simple Fragment of Cyclic Acyldepsipeptides Is Necessary and Sufficient for ClpP Activation and Antibacterial Activity

    Get PDF
    The development of new antibacterial agents, particularly those with unique biological targets, is essential to keep pace with the inevitable emergence of drug resistance in pathogenic bacteria. We identified the minimal structural component of the cyclic acyldepsipeptide (ADEP) antibiotics that exhibits antibacterial activity. We found that N-acyldifluorophenylalanine fragments function via the same mechanism of action as ADEPs, as evidenced by the requirement of ClpP for the fragments' antibacterial activity, the ability of fragments to activate Bacillus subtilis ClpP in vitro, and the capacity of an N-acyldifluorophenylalanine affinity matrix to capture ClpP from B. subtilis cell lysates. N-acyldifluorophenylalanine fragments are much simpler in structure than the full ADEPs and are also highly amenable to structural diversification. Thus, the stage has been set for the development of non-peptide activators of ClpP that can be used as antibacterial agents.National Science Foundation (U.S.)United States. National Institutes of Health (GM-101988

    Subjects with hip osteoarthritis show distinctive patterns of trunk movements during gait-a body-fixed-sensor based analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compensatory trunk movements during gait, such as a Duchenne limp, are observed frequently in subjects with osteoarthritis of the hip, yet angular trunk movements are seldom included in clinical gait assessments. Hence, the objective of this study was to quantify compensatory trunk movements during gait in subjects with hip osteoarthritis, outside a gait laboratory, using a body-fixed-sensor based gait analysis. Frontal plane angular movements of the pelvis and thorax and spatiotemporal parameters of persons who showed a Duchenne limp during gait were compared to healthy subjects and persons without a Duchenne limp.</p> <p>Methods</p> <p>A Body-fixed-sensor based gait analysis approach was used. Two body-fixed sensors were positioned at the dorsal side of the pelvis and on the upper thorax. Peak-to-peak frontal plane range of motion (ROM) and spatiotemporal parameters (walking speed, step length and cadence) of persons with a Duchenne limp during gait were compared to healthy subjects and persons without a Duchenne limp. Participants were instructed to walk at a self-selected low, preferred and high speed along a hospital corridor. Generalized estimating equations (GEE) analyses were used to assess group differences between persons with a Duchenne limp, without a Duchenne limp and healthy subjects.</p> <p>Results</p> <p>Persons with a Duchenne limp showed a significantly larger thoracic ROM during walking compared to healthy subjects and to persons without a Duchenne limp. In both groups of persons with hip osteoarthritis, pelvic ROM was lower than in healthy subjects. This difference however only reached significance in persons without a Duchenne limp. The ratio of thoracic ROM relative to pelvic ROM revealed distinct differences in trunk movement patterns. Persons with hip osteoarthritis walked at a significantly lower speed compared to healthy subjects. No differences in step length and cadence were found between patients and healthy subjects, after correction for differences in walking speed.</p> <p>Conclusions</p> <p>Distinctive patterns of frontal plane angular trunk movements during gait could be objectively quantified in healthy subjects and in persons with hip osteoarthritis using a body-fixed-sensor based gait analysis approach. Therefore, frontal plane angular trunk movements should be included in clinical gait assessments of persons with hip osteoarthritis.</p

    The interaction of lean and building information modeling in construction

    Get PDF
    Lean construction and Building Information Modeling are quite different initiatives, but both are having profound impacts on the construction industry. A rigorous analysis of the myriad specific interactions between them indicates that a synergy exists which, if properly understood in theoretical terms, can be exploited to improve construction processes beyond the degree to which it might be improved by application of either of these paradigms independently. Using a matrix that juxtaposes BIM functionalities with prescriptive lean construction principles, fifty-six interactions have been identified, all but four of which represent constructive interaction. Although evidence for the majority of these has been found, the matrix is not considered complete, but rather a framework for research to explore the degree of validity of the interactions. Construction executives, managers, designers and developers of IT systems for construction can also benefit from the framework as an aid to recognizing the potential synergies when planning their lean and BIM adoption strategies

    Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: substudy from prospective randomised PLATelet inhibition and patient Outcomes (PLATO) trial

    Get PDF
    Objective To evaluate efficacy and safety outcomes in patients in the PLATelet inhibition and patient Outcomes (PLATO) trial who at randomisation were planned for a non-invasive treatment strategy

    Structural Properties of the Sliding Columnar Phase in Layered Liquid Crystalline Systems

    Full text link
    Under appropriate conditions, mixtures of cationic and neutral lipids and DNA in water condense into complexes in which DNA strands form local 2D smectic lattices intercalated between lipid bilayer membranes in a lamellar stack. These lamellar DNA-cationic-lipid complexes can in principle exhibit a variety of equilibrium phases, including a columnar phase in which parallel DNA strands from a 2D lattice, a nematic lamellar phase in which DNA strands align along a common direction but exhibit no long-range positional order, and a possible new intermediate phase, the sliding columnar (SC) phase, characterized by a vanishing shear modulus for relative displacement of DNA lattices but a nonvanishing modulus for compressing these lattices. We develop a model capable of describing all phases and transitions among them and use it to calculate structural properties of the sliding columnar phase. We calculate displacement and density correlation functions and x-ray scattering intensities in this phase and show, in particular, that density correlations within a layer have an unusual exp(const.ln2r)\exp(- {\rm const.} \ln^2 r) dependence on separation r. We investigate the stability of the SC phase with respect to shear couplings leading to the columnar phase and dislocation unbinding leading to the lamellar nematic phase. For models with interactions only between nearest neighbor planes, we conclude that the SC phase is not thermodynamically stable. Correlation functions in the nematic lamellar phase, however, exhibit SC behavior over a range of length scalesComment: 28 pages, 4 figure

    Contribution of clinical course to outcome after traumatic brain injury: mining patient trajectories from European intensive care unit data

    Full text link
    Existing methods to characterise the evolving condition of traumatic brain injury (TBI) patients in the intensive care unit (ICU) do not capture the context necessary for individualising treatment. We aimed to develop a modelling strategy which integrates all data stored in medical records to produce an interpretable disease course for each TBI patient's ICU stay. From a prospective, European cohort (n=1,550, 65 centres, 19 countries) of TBI patients, we extracted all 1,166 variables collected before or during ICU stay as well as 6-month functional outcome on the Glasgow Outcome Scale-Extended (GOSE). We trained recurrent neural network models to map a token-embedded time series representation of all variables (including missing data) to an ordinal GOSE prognosis every 2 hours. With repeated cross-validation, we evaluated calibration and the explanation of ordinal variance in GOSE with Somers' Dxy. Furthermore, we applied TimeSHAP to calculate the contribution of variables and prior timepoints towards transitions in patient trajectories. Our modelling strategy achieved calibration at 8 hours, and the full range of variables explained up to 52% (95% CI: 50-54%) of the variance in ordinal functional outcome. Up to 91% (90-91%) of this explanation was derived from pre-ICU and admission information. Information collected in the ICU increased explanation (by up to 5% [4-6%]), though not enough to counter poorer performance in longer-stay (>5.75 days) patients. Static variables with the highest contributions were physician prognoses and certain demographic and CT features. Among dynamic variables, markers of intracranial hypertension and neurological function contributed the most. Whilst static information currently accounts for the majority of functional outcome explanation, our data-driven analysis highlights investigative avenues to improve dynamic characterisation of longer-stay patients
    corecore