839 research outputs found

    Habitat Characteristics of Northern Bobwhite Quail-Hunting Party Encounters: A Landscape Perspective

    Get PDF
    Landcover data and bobwhite hunting records were used to assess both hunter habitat preferences and the frequency of northern bobwhite encounters by hunting parties in relation to habitat composition during the 1994-1995 and 1995-1996 hunting seasons at the Joseph W. Jones Ecological Research Center in southern Georgia. Patterns of habitat use by hunters, and the frequency of bobwhite encounters varied within and between years, depending on habitat quality, food availability, and other factors. Landscape-scale analyses of standardized bobwhite covey densities (based on coveys pointed in the field) and habitat composition and configuration for the 1994-1995 hunting season revealed that bobwhite densities were: (1) positively associated with the overall percentage agriculture and food plot habitat (reaching a maximum at 30-35% agriculture); and (2) positively associated with edge complexity, and positively associated with agricultural mean patch size [reaching a maximum at 2-3 hectares (5-6 acres)]. Consequently, larger food plots may be more important for increasing bobwhite encounter rates than numerous very small food plots [ \u3c 0.1 hectares (0.25 acres)]. Results of this, and related ongoing studies, have important implications for both landscape design and multiple use resource management. activities in the context of northern bobwhite habitat management in southern upland pine forest ecosystems

    Angular position of nodes in the superconducting gap of YBCO

    Full text link
    The thermal conductivity of a YBCO single crystal has been studied as a function of the relative orientation of the crystal axes and a magnetic field rotating in the Cu-O planes. Measurements were carried out at several temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry characteristic of a superconducting gap with nodes at odd multiples of 45 degrees in k-space was resolved. Experiments were performed to exclude a possible macroscopic origin for such a four-fold symmetry such as sample shape or anisotropic pinning. Our results impose an upper limit of 10% on the weight of the s-wave component of the essentially d-wave superconducting order parameter of YBCO.Comment: 10 pages, 4 figure

    Optical coherence tomography in the assessment of acute changes in cutaneous vascular diameter induced by heat stress.

    Get PDF
    There are limited imaging technologies available that can accurately assess or provide surrogate markers of the in vivo cutaneous microvessel network in humans. In this study, we establish the use of optical coherence tomography (OCT) as a novel imaging technique to assess acute changes in cutaneous microvessel area density and diameter in humans. OCT speckle decorrelation images of the skin on the ventral side of the forearm up to a depth of 500 μm were obtained prior to and following 20-25 mins of lower limb heating in eight healthy males (30.3±7.6 yrs). Skin red blood cell flux was also collected using laser Doppler flowmetry probes immediately adjacent to the OCT skin sites, along with skin temperature. OCT speckle decorrelation images were obtained at both baseline and heating time points. Forearm skin flux increased significantly (0.20±0.15 to 1.75±0.38 CVC, P<0.01), along with forearm skin temperature (32.0±1.2 to 34.3±1.0°C, P<0.01). Quantitative differences in the automated calculation of vascular area densities (26±9 to 49±19%, P<0.01) and individual microvessel diameters (68±17 to 105±25 μm, P<0.01) were evident following the heating session. This is the first in vivo within-subject assessment of acute changes in the cutaneous microvasculature in response to heating in humans and highlights the use of OCT as an exciting new imaging approach for skin physiology and clinical research

    Microstructural evolution under low shear rates during Rheo processing of LM25 alloy

    Get PDF
    © ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure

    Kondo screening in d-wave superconductors in a Zeeman field and implications for STM spectra of Zn-doped cuprates

    Full text link
    We consider the screening of an impurity moment in a d-wave superconductor under the influence of a Zeeman magnetic field. Using the Numerical Renormalization Group technique, we investigate the resulting pseudogap Kondo problem, in particular the field-induced crossover behavior in the vicinity of the zero-field boundary quantum phase transition. The impurity spectral function and the resulting changes in the local host density of states are calculated, giving specific predictions for high-field STM measurements on impurity-doped cuprates.Comment: 5 pages, 4 figs, (v2) remark on c-axis field added, discussion extended, (v3) final version as publishe

    Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication

    Get PDF
    Genome duplication requires accessory helicases to displace proteins ahead of advancing replication forks. Escherichia coli contains three helicases, Rep, UvrD and DinG, that might promote replication of protein-bound DNA. One of these helicases, Rep, also interacts with the replicative helicase DnaB. We demonstrate that Rep is the only putative accessory helicase whose absence results in an increased chromosome duplication time. We show also that the interaction between Rep and DnaB is required for Rep to maintain rapid genome duplication. Furthermore, this Rep–DnaB interaction is critical in minimizing the need for both recombinational processing of blocked replication forks and replisome reassembly, indicating that colocalization of Rep and DnaB minimizes stalling and subsequent inactivation of replication forks. These data indicate that E. coli contains only one helicase that acts as an accessory motor at the fork in wild-type cells, that such an activity is critical for the maintenance of rapid genome duplication and that colocalization with the replisome is crucial for this function. Given that the only other characterized accessory motor, Saccharomyces cerevisiae Rrm3p, associates physically with the replisome, our demonstration of the functional importance of such an association indicates that colocalization may be a conserved feature of accessory replicative motors

    Increased Matrix Metalloproteinase (MMPs) Levels Do Not Predict Disease Severity or Progression in Emphysema

    Get PDF
    Rationale: Though matrix metalloproteinases (MMPs) are critical in the pathogenesis of COPD, their utility as a disease biomarker remains uncertain. This study aimed to determine whether bronchoalveolar lavage (BALF) or plasma MMP measurements correlated with disease severity or functional decline in emphysema. Methods: Enzyme-linked immunosorbent assay and luminex assays measured MMP-1, -9, -12 and tissue inhibitor of matrix metalloproteinase-1 in the BALF and plasma of non-smokers, smokers with normal lung function and moderate-to-severe emphysema subjects. In the cohort of 101 emphysema subjects correlative analyses were done to determine if MMP or TIMP-1 levels were associated with key disease parameters or change in lung function over an 18-month time period. Main Results: Compared to non-smoking controls, MMP and TIMP-1 BALF levels were significantly elevated in the emphysema cohort. Though MMP-1 was elevated in both the normal smoker and emphysema groups, collagenase activity was only increased in the emphysema subjects. In contrast to BALF, plasma MMP-9 and TIMP-1 levels were actually decreased in the emphysema cohort compared to the control groups. Both in the BALF and plasma, MMP and TIMP-1 measurements in the emphysema subjects did not correlate with important disease parameters and were not predictive of subsequent functional decline. Conclusions: MMPs are altered in the BALF and plasma of emphysema; however, the changes in MMPs correlate poorly with parameters of disease intensity or progression. Though MMPs are pivotal in the pathogenesis of COPD, these findings suggest that measuring MMPs will have limited utility as a prognostic marker in this disease. © 2013 D'Armiento et al

    Updating Maryland\u27s Sea-level Rise Projections

    Get PDF
    With its 3,100 miles of tidal shoreline and low-lying rural and urban lands, The Free State is one of the most vulnerable to sea-level rise. Historically, Marylanders have long had to contend with rising water levels along its Chesapeake Bay and Atlantic Ocean and coastal bay shores. Shorelines eroded and low-relief lands and islands, some previously inhabited, were inundated. Prior to the 20th century, this was largely due to the slow sinking of the land since Earth’s crust is still adjusting to the melting of large masses of ice following the last glacial period. Over the 20th century, however, the rate of rise of the average level of tidal waters with respect to land, or relative sea-level rise, has increased, at least partially as a result of global warming. Moreover, the scientific evidence is compelling that Earth’s climate will continue to warm and its oceans will rise even more rapidly. Recognizing the scientific consensus around global climate change, the contribution of human activities to it, and the vulnerability of Maryland’s people, property, public investments, and natural resources, Governor Martin O’Malley established the Maryland Commission on Climate Change on April 20, 2007. The Commission produced a Plan of Action1 that included a comprehensive climate change impact assessment, a greenhouse gas reduction strategy, and strategies for reducing Maryland’s vulnerability to climate change. The Plan has led to landmark legislation to reduce the state’s greenhouse gas emissions and a variety of state policies designed to reduce energy consumption and promote adaptation to climate change

    Low power radiometric partial discharge sensor using composite transistor-reset integrator

    Get PDF
    The measurement of partial discharge provides a means of monitoring insulation health in high-voltage equipment. Traditional partial discharge measurements require separate installation for each item of plant to physically connect sensors with specific items. Wireless measurement methods provide an attractive and scalable alternative. Existing wireless monitoring technologies which use time-difference-of-arrival of a partial discharge signal at multiple, spatially separated, sensors place high demands on power consumption and cost due to a requirement for rapid sampling. A recently proposed partial discharge monitoring system using a wireless sensor network and measuring received signal strength only, has potential cost and scalability advantages. An incoherent wireless sensor incorporating a transistor-reset integrator has been developed that reduces the measurement bandwidth of the PD events and alleviates the need for high-speed sampling. It is based on composite amplifier techniques to reduce the power requirements by a factor of approximately four without compromising precision. The accuracy of the proposed sensor is compared to that obtained using a high-speed digital sampling oscilloscope. Received energies were measured over a 10 m distance in 1 m increments and produced an error within 1 dB beyond 4 m and 3.2 dB at shorter distances, resulting in a measurement accuracy within 1 m
    corecore