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ABSTRACT 
The measurement of partial discharge provides a means of monitoring insulation health 

in high-voltage equipment. Traditional partial discharge measurements require separate 

installation for each item of plant to physically connect sensors with specific items. 

Wireless measurement methods provide an attractive and scalable alternative. Existing 

wireless monitoring technologies which use time-difference-of-arrival of a partial 

discharge signal at multiple, spatially separated, sensors place high demands on power 

consumption and cost due to a requirement for rapid sampling. A recently proposed 

partial discharge monitoring system using a wireless sensor network and measuring 

received signal strength only, has potential cost and scalability advantages.  An 

incoherent wireless sensor incorporating a transistor-reset integrator has been developed 

that reduces the measurement bandwidth of the PD events and alleviates the need for 

high-speed sampling. It is based on composite amplifier techniques to reduce the power 

requirements by a factor of approximately four without compromising precision. The 

accuracy of the proposed sensor is compared to that obtained using a high-speed digital 

sampling oscilloscope. Received energies were measured over a 10 m distance in 1 m 

increments and produced an error within 1 dB beyond 4 m and 3.2 dB at shorter 

distances, resulting in a measurement accuracy within 1 m.  

   Index Terms — Analog processing circuits; partial discharge measurement; power 

system reliability; UHF measurements; wireless sensor networks. 

 

1  INTRODUCTION 

 PARTIAL discharge (PD) occurs in degraded high voltage 

(HV) insulation. The IEC60270 standard defines PD as “a 

localized electrical discharge that only partially bridges the 

insulation between conductors and which can or cannot occur 

adjacent to a conductor. Partial discharges are in general a 

consequence of local electrical stress concentrations in the 

insulation or on the surface of the insulation. Generally, such 

discharges appear as pulses having a duration of much less than 

1 microsecond” [1]. Overtime the discharge can further degrade 

the insulation, leading to eventual catastrophic failure. Each 

discharge represents a short current pulse and the monitoring of 

these pulses is a well-established technique for assessing the 

insulation condition in HV equipment such as transmission 

lines, switchgear and transformers [2]. Traditional technologies 

for detecting PD current pulses include galvanic contact 
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devices, high frequency current transformers (HFCTs) and 

transient earth voltage (TEV) sensors [3]. These techniques 

provide direct access to PD events, along with valuable 

information, such as apparent charge and spectra, in order to 

evaluate the type of discharge and assess the fault progression. 

Due to the close coupling of the sensor and PD source, however, 

they are sensitive to only the most local sources of PD, requiring 

separate sensor provision for each item of plant to be monitored. 

Comprehensive monitoring of all plant items in a large 

substation using these technologies can be expensive due to the 

large number of sensors required and the extensive wiring 

harness needed to connect the sensors to a data collection hub. 

The resulting sensor network can also be expensive to 

reconfigure.  

Radiometric detection of PD uses a broadband radio receiver 

to detect the UHF energy radiated electromagnetically from the 

source of the PD discharge. Multiple, spatially-separated, 

radiometric sensors can be used to locate the PD source. It is a 

non-invasive, easy to install and simple to reconfigure 

technique, and provides an attractive alternative to traditional 

approaches since no galvanic or physical connection is 

necessary and a single sensor can monitor multiple items of 

plant equipment. A limitation of wireless techniques is, 

however, potentially reduced diagnostic information, since the 

PD signal is degraded due to the radiation process, and further 

distorted by the propagation environment. Several variations on 

radiometric PD detection methods have been suggested [e.g. 4-

6]. These include techniques which directly sample the RF PD 

signal [7-9]. Whilst direct sampling provides a particularly 

accurate measurement of the signal, and is necessary if the PD 

source is to be located using time of arrival (TOA) or time 

difference of arrival (TDOA) measurements, it requires a 

sampling rate of the order of 1 GSa/s typically, leading to a 

power in excess of 300 mW. The sensors in a practical PD 

wireless sensor network (WSN) should be capable of operating 

for at least year between battery changes. Low power 

techniques using peak hold circuitry have already been 

described [10]. Directly sampled peak hold circuits for 

radiometric measurements are complicated to implement due to 

the short duration of the received PD signal peak. Achieving 

linearity over the dynamic range is also difficult due to the non-

linear response of the required rectifying diodes. Furthermore, 

whilst peak power provides an acceptable metric for 

localization, it is not easily related to apparent charge in the PD 

fault [11] making diagnostic analysis difficult. 

Measurements have been reported [12, 13] that suggest total 

RF energy propagated from a PD discharge and apparent charge 

displaced in the void have a linear relationship; therefore, 

integration of received PD power may provide useful diagnostic 

information. Methods have been proposed for PD location and 

measurement using received signal-strength (RSS) in the UHF 

frequency band [14-16]. The benefit of RSS over TOA and 

TDOA based systems is that synchronization between nodes is 

not required, making a WSN fully-scalable for the area to be 

observed. However, the fundamental challenge of such an 

incoherent network of sensors is the wide bandwidth of the PD 

signal limiting the measurement signal-to-noise ratio (SNR) 

and thus the detection range. Some of these techniques use 

envelope detection in order to remove the RF component from 

the received signal [17] and allow for reduced sampling rates of 

around 20 MSa/s at the cost of reduced measurement accuracy 

[18]. 

A WSN system for the detection, location and monitoring of 

PD has previously been proposed [19-21]. The system is based 

around radiometric sensors that utilize a transistor-reset 

integrator (TRI) removing the requirement for high speed data 

conversion and data processing. Whilst conversion speed is 

reduced, power consumption is still an issue if precision high-

speed analogue IC-based circuitry is used to detect and measure 

the PD signal. The TRI requires a low offset voltage, wide 

bandwidth and high input impedance in order to operate 

correctly. Furthermore, the sensor nodes (and therefore the 

TRI) must be capable of operating in an outdoor environment 

over a temperature range of -10 to +40 ºC without significant 

errors. A signal processing circuit based around a high-speed 

precision composite amplifier is proposed here that removes the 

requirement for high-speed direct conversion and high-speed 

signal processing whilst maintaining a large bandwidth and 

high precision. The quiescent current consumption of the 

proposed circuit is less than 10 mA extending the time required 

between sensor node battery changes significantly. Battery life 

is further extended by placing the node into stand-by mode in 

between measurements, significantly reducing the supply 

current of the sensor nodes and increasing sensor operating 

time. 

2  WIRELESS PD SENSOR NODE 

2.1 SENSOR OVERVIEW 

The sensor node, Figure 1, comprises a dipole antenna, an RF 

front-end, a signal conditioning unit, a micro-controller and a 

WirelessHART unit. 

 

 
Figure 1. Radiometric PD sensor system diagram. 
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The RF front-end contains a band-pass roofing filter, a band-

stop filter, low noise amplifier (LNA) and detector. 

Experimental work presented in [22, 23] found that the 

frequency ranges of a variety of radiometric PD typically reside 

between 50–800 MHz, with the majority of the energy below 

300 MHz; therefore, the sensor measurement band was selected 

within this range. The roofing filter excludes all interference 

and noise outside the 30 – 320 MHz PD measurement band. The 

band-stop filter removes coherent interference in the region of 

70 – 250 MHz (principally arising from FM radio, digital TV 

and DAB transmissions). The LNA provides a fixed gain of 

16.5 dB to increase the sensor sensitivity. Due to the filters and 

LNA, the RF front-end has a frequency response with two main 

bands of approximately 30-70 MHz and 250-320 MHz, with a 

pass-band gain between 12-14 dB, and a noise figure in the 

range of 5-7 dB. The detector uses two HSMS2850 high 

sensitivity Schottky diodes in the voltage-doubler zero-bias 

circuit shown in Figure 2, and produces a baseband output 

voltage approximately proportional to the RF input power [24]. 

The output-input characteristic of the detector, shown in Figure 

3, was generated by applying a sine-wave signal, at a frequency 

of 200 MHz, to the input of the detector and adjusting the power 

level of the signal from -25 to 0 dBm.  

 
Figure 2. Zero-bias detector circuit, RS provides a 50Ω input impedance. RL is 

set to 1.5 kΩ to ensure the output tracks the envelope of the PD signal, and CL 

is the 14 pF input capacitance of the oscilloscope used for measurement. 

 

 
Figure 3. Detector output-input characteristic with straight line approximation. 

 

VLNA and VDET are the LNA output voltage and detector output 

voltage respectively. The detector requires no power supply at 

the cost of reduced sensitivity and dynamic range. The straight 

line approximation transfer function is: 

���� = ���	                         (1) 

where PIN is the power of the received RF signal, VDET is the 

detector output and K = 185 mV/mW. The signal conditioning 

unit comprises a high-speed, precision, non-inverting amplifier, 

a comparator and a transistor reset integrator (TRI). The non-

inverting amplifier in Figure 1 presents a high impedance to the 

detector output ensuring that detector sensitivity is not reduced 

due to loading. The TRI provides further amplification and 

integrates the precision amplifier output giving a signal 

proportional to the accumulated energy of the PD RF pulses. 

Each additional pulse therefore produces a quasi-step change in 

the TRI output. The size of the step is a measure of PD pulse 

energy. Each step of the resulting staircase TRI output is 

sampled by the internal ADC of the micro-controller which 

calculates the delta step-size. The step increments are averaged 

to find the mean PD signal energy. A comparator channel 

driven by the non-inverting amplifier enables the TRI when PD 

is present. When PD is absent the output of the comparator 

disables the TRI avoiding integration when only noise is 

present. The comparator output also drives a mono-stable, with 

a 5 µs time-constant that produces a PD pulse count in the 

microcontroller. The 5 µs time-constant ensures that the micro-

controller has sufficient time to detect the count pulse.  

2.2 PROPOSED SIGNAL CONDITIONING CIRCUITRY 

The precision high-speed amplifier provides a high input 

impedance to ensure minimal loading to the zero-bias detector, 

whilst the DC offset voltage and drift are kept to a minimum so 

that a low threshold voltage can be achieved by the comparator 

over a substantial ambient temperature range. These 

requirements would place too high a demand on a single 

operational amplifier so a composite design has been 

implemented [25, 26], Figure 4. 

 

Figure 4. Precision high-speed composite amplifier. 

 

The circuit is built around a 500 µA 105 MHz bipolar 

operation amplifier U1 forming a non-inverting amplifier with 

R3 and R4 setting the closed loop voltage gain to 3.2. A discrete 

BF862 JFET source follower input stage provides a high 

impedance, low noise, input. The FET, Q1, is biased at 500 µA 

via the VBE referenced current source [27], Q2 and Q3. This 

arrangement would normally result in excessive offset voltage 

and temperature drift due to the JFET. The circuit attains its DC 

precision, however, through stabilization using U2; an 18 µA, 3 

µV offset, precision operational amplifier. This provides DC 

compensation for both the FET and the offset voltage of U1.  

The circuit operates as follows. A replica feedback point is 

created via R5 and R6. U2 monitors the DC component of this 

voltage through a low-pass filter (R7 and C2), with a cutoff 
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frequency of 0.48 Hz to ensure the detected PD signal is fully 

removed, and compares it to the input DC voltage through an 

identical filter (R1 and C1). The output of U2 then adjusts the DC 

level of U1’s summing junction to that of the VGS bias voltage 

of Q1, resulting in an output DC offset error equal to that of U2 

multiplied by the closed loop gain of U1. Voltage offset 

temperature drift is also limited to that of U2, (approximately 

0.05 µV/ºC max). The maximum offset is thus limited to below 

10 µV over a range of -10 to 40 ºC. The output of the precision 

high-speed amplifier is applied to a high-speed comparator, 

Figure 5, and the TRI. 

 

Figure 5. Precision high-speed comparator and mono-stable section. 

 

The comparator is a low-power high-speed type, with a 

quiescent supply current of 470 µA and a propagation delay of 

8 ns. High-speed non-inverting amplifier U3, set to a gain of 10, 

increases the input signal allowing the comparator threshold to 

be set to a level significantly higher than the noise floor, 

ensuring reduced probability of false triggering. The 

comparator section is set to a threshold voltage of 4 mV 

(equating to a receiver sensitivity of -36 dBm at the receiving 

antenna), which activates the integration window of the TRI 

and triggers the mono-stable circuit. The mono-stable output 

pulse provides a digital count to the micro-controller every time 

a PD pulse is received. The timing components, R16 and C4, set 

the 5 µs time-constant. Figure 6 shows the received emulated 

PD source, the detector output, the precision high-speed 

amplifier output and the comparator output, the delay to the 

amplifier output is due to the 150 V/µs slew-rate of U1, and the 

transient oscillations at the peak and tail of the output waveform 

are due to the output of the high speed comparator switching 

transitions. 

 
Figure 6. Emulated PD signal received by the sensor, detector output, 

precision high-speed amplifier output and comparator output. 

 

The TRI, Figure 7, is also designed using composite based 

techniques. Q4, R17, U5 and C5 form a precision FET input 

integrator. Q4 is resistor biased since the common-mode input 

voltage is a DC constant at approximately 0 V. U6 provides DC 

stability by monitoring the summing point at the gate of Q4 and 

comparing it to ground. The output then compensates for the 

VGS of Q4, in a similar fashion to that of Figure 4, and provides 

an overall DC offset equal to that of U6. The resulting circuit is 

a high input-impedance, high-speed, precision integrator with 

very low DC drift between received PD signals.  

 

 
Figure 7. Precision high-speed composite TRI. 

 

As with the precision high-speed amplifier, DC temperature 

drift is dependent on U6 and is less than 0.05 µV/ºC. The entire 

signal conditioning circuitry consumes only 27 mW from a 3.3 

V supply. 

When an envelope detected PD signal is applied to the TRI 

(and only when such a signal is detected) the comparator closes 

S1 and the TRI starts integrating. Once the received signal drops 

below the comparator threshold the TRI enters its hold mode 

and the output voltage, proportional to the energy of the 

received pulse, remains at a constant level. Subsequent received 

signals are processed in the same way, resulting in a staircase 

signal at the output of the TRI. When the output of the TRI 

reaches a threshold of -1.5 V (set by resistors R23 and R24) 

comparator U7 outputs a high level switching on Q5. This 

discharges the integrator capacitor C5 and activates Q6 which 

changes the comparator threshold to approximately 0 V. This 

ensures capacitor C5 is fully discharged and the integrator is 

reset. The inverting amplifier, U7, inverts the negative going 

voltage of the TRI resulting in a positive signal and amplifies it 

by two, ensuring the full 0-3 V resolution of the 10-bit ADC is 

used. A step to the TRI output voltage can be calculated from: 

∆���� = �
�
���� � ��������

�       (2) 

where ∆VTRI is a step change to the TRI output voltage, and τTRI, 

AVT, and VDET are the TRI time constant (1 µs), signal 

conditioning unit gain and detector output voltage respectively. 

Since VDET = KPLNA, where PLNA is the LNA output power, the 

-200 -100 0 100 200 300 400 500
-400

-300

-200

-100

0

100

200

300

400

Time (ns)

A
m

p
lit

u
d
e

 (
m

V
)

 

 

Received PD Signal after LNA

Detector Output

Non-Inverting Amp Output

Comparator Output (3.3V High Level)



 

output of the signal conditioning circuitry can be related to the 

received PD energy by: 

��	� = ����
��
� � ������

� ��                          (3) 

where ELNA is the LNA output energy for a single PD pulse. 

Figures 8 and 9 show the output of the TRI for a single emulated 

PD event and for multiple events. 

 

 

 
Figure 8. Received PD pulse after LNA, detector output and TRI output. 

 

 
Figure 9. TRI output for multiple received PD events.  

3 RESULTS 

3.1 PERFORMANCE EVALUATION 

To confirm the accuracy of the detector and TRI an artificial 

PD was generated via a floating electrode PD emulation cell 

and a 30 kV AC power supply, Figure 10. 

 

Figure 10. 30 kV power supply and floating point PD emulation cell. 

 

The 30 kV power supply was connected to the PD emulation 

cell and energized at 10 kV. The resulting radiometric signal, 

propagated from the PD cell, was received using a dipole 

antenna connected to the input of the sensor under test, at a 

distance of 2 m from the PD source.  The outputs of the LNA, 

detector and TRI were then measured using a digital sampling 

oscilloscope (DSO), Figure 11. 

 

Figure 11. Configuration for indoor testing. 

 

The received signal was attenuated using RF pads from -3 to 

-23 dB to simulate increasing sensor distance from the PD 

source. The amplified PD signal, detector output and TRI 

output were sampled at 2 GSa/s using a DSO. The received 

energy was calculated using (3) for the TRI output, whilst the 

amplified PD pulse and detector output were integrated 

digitally to find PD pulse energies using (3) and (4) 

respectively. 

��	� = ∆�∑ ��� !"
�

#�$#        (4) 

���� = ∆�∑ ��	&'�
�

#�$#        (5) 

where ELNA and EDET are the LNA output and detector output 

energies, ∆T is the time between sampled data points (0.5 ns), 

VLNA is the LNA output voltage, n is the number of samples 

(2000), and R is the input impedance of the sensor under test 

(50 Ω). Figure 12 shows the energies calculated from the 

amplified received PD and detector output signals, plus the 

sampled TRI output signal. 

 

Figure 12. Integrals of the powers calculated from the amplified received PD 

signal, the zero bias detector output and the TRI output. 

 

The time delay between the LNA and detector energies is due 

to the response of the detector causing a minor expansion to the 

pulse envelope. The further delay to the TRI response is due to 

the transient response times of the high-speed comparator and 

analog switch S1, along with propagation delays through 
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interconnecting transmission lines and adapters. However, 

although delays are present between each integral, they still 

converge to approximately the same value. The results are 

shown in Figure 13 with the vertical axis plotted in dBnJ 

(decibels per nano-Joule). The difference between the energies 

inferred from the DSO measurement, detector output and TRI 

output are shown in Figure 14. 

 

Figure 13. LNA output, detector output and TRI output energies versus 

attenuation. 

 

 
Figure 14. LNA output, detector output and TRI output error versus 

attenuation. 

 

We assume the energy calculated using (4) from the DSO 

measurement of the LNA output signal to have the highest 

accuracy. The accuracy of the detector output (with respect to 

the LNA output) is +1.0/-1.7 dB. The accuracy of the TRI is 

+0.9/-1.6 dB. The difference between the detector and TRI 

outputs is +0.1/-0.8 dB suggesting that the error is principally 

due to non-linearity of the detector response, especially at high 

signal levels. The accuracy of the energy inferred from the TRI 

output has been shown to be sufficient for RSS location of PD 

sources to within about 1 m. 

3.2 OUTDOOR DISTANCE AND LOCALIZATION 
ACCURACY TESTS 

Further comparisons between the energy obtained through 

direct sampling and the TRI output were generated through 

outdoor testing of the sensor, and comparing the accuracy of the 

LNA output energy to that of the detector and TRI. A 10 nC 

emulated PD source was generated via a commercial HVPD pC 

(Pico-coulomb) calibrator, and transmitted via a dipole antenna, 

resulting in a narrow-band PD like pulse, Fig. 8. The sensor was 

then used to measure the emulated HVPD PD source from a 

distance of 1 to 10 m in increments of 1 m. Figure 15 shows the 

energies measured at a given distance, whilst Figure 16 shows 

the error between the energies calculated from the detector and 

TRI outputs compared to the energy obtained through direct 

sampling. 

 

Figure 15. Outdoor measurement of an emulated 10 nC PD source at 

distances of 1 to 10 m. 

 

 
Figure 16. Errors between sampled, detector and TRI energies for the 

distance measurements. 

 

The error between TRI and detector energies is between -0.1 

and +0.3 dB. The error between the detector output and LNA 

output energies is between -0.4 and +0.2 dB beyond a distance 

of 4 m, whilst the error between the LNA Output energy and 

the TRI is between -0.4 and +0.2 dB beyond 4 m. At distances 

below 4 m the error increases, with an error of -3.1 and -3.2 dB 

at 1 m for the detector output and TRI output energies 

respectively, corresponding to an error in distance of 

approximately 1 m. This error is due to the zero-bias detector 

entering the transition between the square and linear responding 

regions, above a signal level of approximately 0 dBm. 

To determine the impact of the error at distances below 4 m 

the accuracy of the TRI was evaluated for radiometric PD 

localization and compared to location estimation performed 

using the energy obtained through direct high-speed sampling, 

with the focus on the relative error between measurement 

techniques and not the absolute accuracy. This was performed 

by creating a six position 3 by 2 grid of node locations, spaced 

5 m apart, Figure 17. A spacing of 5 m was used to ensure each 

sensor was able to receive the radiometric PD signal, since the 
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range of the sensors is limited by the sensitivity of the detector 

used. 

 
Figure 17. Outdoor PD Localization Test Sensor Layout. 

 

The reference origin was set at Node 1. The emulated PD source 

was placed at x and y coordinates of 3.15 and 1.79 m. The LNA 

output, detector output and TRI output were recorded, at each 

node location from 1 to 6, using a DSO at a 2 GSa/s sample-

rate. The energies were then calculated for each recorded signal 

using the same methods as those used for Figure 13. In order to 

calculate the location estimations, a simple location algorithm 

was implemented, derived from (5) and (6), based on RSS 

where the transmitted power is unknown [28]. The algorithm 

uses ratios of powers received from sensor pairs for location 

estimation. 

(� = (� − 10,log0���        (6) 

12
13 = 453

52
6 = 753528

3
6

           (7) 

where Ri, Pi, and di are the ith sensor received power in dBm, 

linear power in mW and distance from the PD source, R0 is the 

transmitted power in dBm, n is the path-loss index, and P1 and 

d1 are the 1st sensor received power in mW and distance from 

the source. In free-space n is typically 2 over short distances, 

increasing to 4 over larger distances when grounds reflections 

are introduced, and increasing further if the environment has 

obstructions or produces multi-path propagation. The received 

power of the 1st sensor is used as the reference power for all 

other sensors. No processing was performed to improve the 

accuracy of the location algorithm or to resolve any multipath 

or scattering, to ensure that any error between the sampled, 

detector and TRI energies were left uncorrected; and therefore, 

any difference between measurement techniques was evident. 

In a practical installation site, the propagation environment is 

complex, producing a filtering effect to the radiometric PD 

signal, with multipath and scattering cause sufficient errors to 

location accuracy; therefore, a more complex location 

algorithm could be implemented to account for the path-loss 

parameters [29-31]; however, location estimation of 1 m 

accuracy is sufficient within a practical setting, and the filtering 

of the complex environment does not significantly affect the PD 

signal within the measurement bandwidth. 

Since energy is the integral of the received power, the energy 

levels measured were directly inputted into the algorithm. The 

results were plotted for the sampled energy, and the energies 

calculated from the sampled detector and TRI outputs, for 

values of n from 1 to 7. Figure 18 shows the plotted location 

results whilst Figure 19 shows the distance error between the 

LNA output energy, and the detector and TRI output energies. 

 
Figure 18. PD localization results obtained from the LNA output, detector 

output and TRI output energies for n from 1 to 7. 

 
Figure 19. Errors between the LNA output energy, and detector output and 

TRI output energies for values of n from 1 to 7. 

The estimation error is from 55 to 83 cm, 46 to 76 cm and 48 

to 75 cm for the LNA output, detector output and TRI output 

energies respectively compared to the actual PD source 

location. The error in distance between the sampled energy and 

the TRI is between 10 and 13 cm, whilst the error between the 

sampled and detector energies is between 9 and 17 cm. The 

error between the sampled energy, and TRI and detector 

energies is 13 and 14 cm respectively when the path-loss index 

equals 2. The errors between each energy measurement 

technique are minor in contrast to those compared to the actual 

PD source location and measurement results. 

4 CONCLUSION 

A technique for the measurement of radiometric PD signals 

has been described that requires minimal power consumption 

and data processing. The composite TRI-based signal 

conditioning circuitry consumes only 27 mW, providing a low 

power signal processing solution for large-scale radiometric 

monitoring of HV insulation health in electricity substations. 

The measurement accuracy realized by the proposed circuit is 

within 1 dB for distances greater than 4 m, and within 3.2 dB 

below 4 m, placing the measurement accuracy of a single sensor 

to within 1 m. This error is sufficient for assessment and 
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location of PD and it is acceptable considering the cost and 

power reduction. Greater accuracy and distance could be 

secured using a detector with higher linearity and sensitivity, at 

an increase in power and cost. This could be performed using 

automatic gain control in the RF section, sub-ranging the 

received signal into multiple identical amplitude bands, 

therefore limiting the range seen by the detector whilst allowing 

for a higher overall dynamic range. This would allow for a 

greater spacing between sensor nodes, and therefore a reduction 

of the total number of sensors required. 
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