159 research outputs found

    Validation of loci at 2q14.2 and 15q21.3 as risk factors for testicular cancer.

    Get PDF
    Testicular germ cell tumor (TGCT), the most common cancer in men aged 18 to 45 years, has a strong heritable basis. Genome-wide association studies (GWAS) have proposed single nucleotide polymorphisms (SNPs) at a number of loci influencing TGCT risk. To further evaluate the association of recently proposed risk SNPs with TGCT at 2q14.2, 3q26.2, 7q36.3, 10q26.13 and 15q21.3, we analyzed genotype data on 3,206 cases and 7,422 controls. Our analysis provides independent replication of the associations for risk SNPs at 2q14.2 (rs2713206 at P = 3.03 × 10-2; P-meta = 3.92 × 10-8; nearest gene, TFCP2L1) and rs12912292 at 15q21.3 (P = 7.96 × 10-11; P-meta = 1.55 × 10-19; nearest gene PRTG). Case-only analyses did not reveal specific associations with TGCT histology. TFCP2L1 joins the growing list of genes located within TGCT risk loci with biologically plausible roles in developmental transcriptional regulation, further highlighting the importance of this phenomenon in TGCT oncogenesis

    Prediction of individual genetic risk to prostate cancer using a polygenic score

    Get PDF
    BACKGROUND Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction. METHODS We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls. RESULTS The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P-=-0.0012) and the net reclassification index with 0.21 (P-=-8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk. CONCLUSIONS Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction

    Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Case-Control Sequencing Studies

    Get PDF
    Rare variants (RVs) have been shown to be significant contributors to complex disease risk. By definition, these variants have very low minor allele frequencies and traditional single-marker methods for statistical analysis are underpowered for typical sequencing study sample sizes. Multimarker burden-type approaches attempt to identify aggregation of RVs across case-control status by analyzing relatively small partitions of the genome, such as genes. However, it is generally the case that the aggregative measure would be a mixture of causal and neutral variants, and these omnibus tests do not directly provide any indication of which RVs may be driving a given association. Recently, Bayesian variable selection approaches have been proposed to identify RV associations from a large set of RVs under consideration. Although these approaches have been shown to be powerful at detecting associations at the RV level, there are often computational limitations on the total quantity of RVs under consideration and compromises are necessary for large-scale application. Here, we propose a computationally efficient alternative formulation of this method using a probit regression approach specifically capable of simultaneously analyzing hundreds to thousands of RVs. We evaluate our approach to detect causal variation on simulated data and examine sensitivity and specificity in instances of high RV dimensionality as well as apply it to pathway-level RV analysis results from a prostate cancer (PC) risk case-control sequencing study. Finally, we discuss potential extensions and future directions of this work

    Genomic evolution shapes prostate cancer disease type

    Get PDF
    H.R.F. was supported by a Cancer Research UK Programme Grant to Simon Tavaré (C14303/A17197), as, partially, was A.G.L. A.G.L. acknowledges the support of the University of St Andrews. A.G.L. and J.H.R.F. also acknowledge the support of the Cambridge Cancer Research Fund.The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Aalternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.Peer reviewe

    Blood lipids and prostate cancer: a Mendelian randomization analysis.

    Get PDF
    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL consortium were analyzed. Allele scores based on single nucleotide polymorphisms (SNPs) previously reported to be uniquely associated with each of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels, were first validated in an independent dataset, and then entered into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL, comparing high- (≥7 Gleason score) versus low-grade (<7 Gleason score) cancers was 1.50 (95% CI: 0.92, 2.46; P = 0.11). A genetically instrumented SD increase in TGs was weakly associated with stage: the OR for advanced versus localized cancer per unit increase in genetic risk score was 1.68 (95% CI: 0.95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk. We found weak evidence that higher LDL and TG levels increase aggressive prostate cancer risk, and that a variant in HMGCR (that mimics the LDL lowering effect of statin drugs) reduces risk. However, inferences are limited by sample size and evidence of pleiotropy.C. J. B. is funded by the Wellcome Trust 4-year studentship WT083431MA. The Integrative Cancer Epidemiology Programme is supported by Cancer Research UK programme grant C18281/A19169. The MRC IEU is supported by the Medical Research Council and the University of Bristol (MC_UU_12013/1-9). The NIHR Bristol Nutrition Biomedical Research Unit is funded by the National Institute for Health Research (NIHR) and is a partnership between University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The CRUK study and PRACTICAL consortium is supported by the Canadian Institutes of Health Research, European Commission’s Seventh Framework Programme grant agreement no. 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, and C16913/ A6135. The National Institutes of Health (NIH) Cancer Post-Cancer GWAS initiative grant no. 1 U19 CA 148537-01 (the GAME-ON initiative) and NIHR support to the Biomedical Research Centre and The Institute of Cancer Research and Royal Marsden NHS Foundation Trust.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cam4.69

    REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants

    Get PDF
    Supplemental Data Supplemental Data include one figure and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2016.08.016. Supplemental Data Document S1. Figure S1 and Tables S1–S5 Download Document S2. Article plus Supplemental Data Download Web Resources ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/ dbNSFP, https://sites.google.com/site/jpopgen/dbNSFP Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/ REVEL, https://sites.google.com/site/revelgenomics/ SwissVar, http://swissvar.expasy.org/ The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10−12) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046–0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027–0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale

    Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21

    Get PDF
    Previous genome-wide association studies (GWAS) of prostate cancer risk focused on cases unselected for family history and have reported over 100 significant associations. The International Consortium for Prostate Cancer Genetics (ICPCG) has now performed a GWAS of 2511 (unrelated) familial prostate cancer cases and 1382 unaffected controls from 12 member sites. All samples were genotyped on the Illumina 5M+exome single nucleotide polymorphism (SNP) platform. The GWAS identified a significant evidence for association for SNPs in six regions previously associated with prostate cancer in population-based cohorts, including 3q26.2, 6q25.3, 8q24.21, 10q11.23, 11q13.3, and 17q12. Of note, SNP rs138042437 (p = 1.7e−8) at 8q24.21 achieved a large estimated effect size in this cohort (odds ratio = 13.3). 116 previously sampled affected relatives of 62 risk-allele carriers from the GWAS cohort were genotyped for this SNP, identifying 78 additional affected carriers in 62 pedigrees. A test for an excess number of affected carriers among relatives exhibited strong evidence for co-segregation of the variant with disease (p = 8.5e−11). The majority (92 %) of risk-allele carriers at rs138042437 had a consistent estimated haplotype spanning approximately 100 kb of 8q24.21 that contained the minor alleles of three rare SNPs (dosage minor allele frequencies <1.7 %), rs183373024 (PRNCR1), previously associated SNP rs188140481, and rs138042437 (CASC19). Strong evidence for co-segregation of a SNP on the haplotype further characterizes the haplotype as a prostate cancer pre-disposition locus

    Fine mapping the KLK3 locus on chromosome 19q13.33 associated with prostate cancer susceptibility and PSA levels

    Get PDF
    Measurements of serum prostate-specific antigen (PSA) protein levels form the basis for a widely used test to screen men for prostate cancer. Germline variants in the gene that encodes the PSA protein (KLK3) have been shown to be associated with both serum PSA levels and prostate cancer. Based on a resequencing analysis of a 56 kb region on chromosome 19q13.33, centered on the KLK3 gene, we fine mapped this locus by genotyping tag SNPs in 3,522 prostate cancer cases and 3,338 controls from five case–control studies. We did not observe a strong association with the KLK3 variant, reported in previous studies to confer risk for prostate cancer (rs2735839; P = 0.20) but did observe three highly correlated SNPs (rs17632542, rs62113212 and rs62113214) associated with prostate cancer [P = 3.41 × 10−4, per-allele trend odds ratio (OR) = 0.77, 95% CI = 0.67–0.89]. The signal was apparent only for nonaggressive prostate cancer cases with Gleason score <7 and disease stage <III (P = 4.72 × 10−5, per-allele trend OR = 0.68, 95% CI = 0.57–0.82) and not for advanced cases with Gleason score >8 or stage ≥III (P = 0.31, per-allele trend OR = 1.12, 95% CI = 0.90–1.40). One of the three highly correlated SNPs, rs17632542, introduces a non-synonymous amino acid change in the KLK3 protein with a predicted benign or neutral functional impact. Baseline PSA levels were 43.7% higher in control subjects with no minor alleles (1.61 ng/ml, 95% CI = 1.49–1.72) than in those with one or more minor alleles at any one of the three SNPs (1.12 ng/ml, 95% CI = 0.96–1.28) (P = 9.70 × 10−5). Together our results suggest that germline KLK3 variants could influence the diagnosis of nonaggressive prostate cancer by influencing the likelihood of biopsy

    Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci.

    Get PDF
    BACKGROUND: Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. METHODS: We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS). We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived age-specific absolute risks of developing prostate cancer by PRS stratum and family history. RESULTS: The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09). CONCLUSIONS: Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles. IMPACT: We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.D F. Easton was recipient of the CR-UK grant C1287/A10118. R A. Eeles was recipient of the CR-UK grant C5047/A10692 and B E. Henderson was recipient of the NIH grant 1U19CA148537-01This is the author accepted manuscript. The final version is available via AACR at http://cebp.aacrjournals.org/content/early/2015/04/02/1055-9965.EPI-14-0317.long
    corecore