1,349 research outputs found
Invariant Reconstruction of Curves and Surfaces with Discontinuities with Applications in Computer Vision
The reconstruction of curves and surfaces from sparse data is an important task in many applications. In computer vision problems the reconstructed curves and surfaces generally represent some physical property of a real object in a scene. For instance, the sparse data that is collected may represent locations along the boundary between an object and a background. It may be desirable to reconstruct the complete boundary from this sparse data. Since the curves and surfaces represent physical properties, the characteristics of the reconstruction process differs from straight forward fitting of smooth curves and surfaces to a set of data in two important areas. First, since the collected data is represented in an arbitrarily chosen coordinate system, the reconstruction process should be invariant to the choice of the coordinate system (except for the transformation between the two coordinate systems). Secondly, in many reconstruction applications the curve or surface that is being represented may be discontinuous. For example in the object recognition problem if the object is a box there is a discontinuity in the boundary curve at the comer of the box. The reconstruction problem will be cast as an ill-posed inverse problem which must be stabilized using a priori information relative to the constraint formation. Tikhonov regularization is used to form a well posed mathematical problem statement and conditions for an invariant reconstruction are given. In the case where coordinate system invariance is incorporated into the problem, the resulting functional minimization problems are shown to be nonconvex. To form a valid convex approximation to the invariant functional minimization problem a two step algorithm is proposed. The first step forms an approximation to the curve (surface) which is piecewise linear (planar). This approximation is used to estimate curve (surface) characteristics which are then used to form an approximation of the nonconvex functional with a convex functional. Several example applications in computer vision for which the invariant property is important are presented to demonstrate the effectiveness of the algorithms. To incorporate the fact that the curves and surfaces may have discontinuities the minimizing functional is modified. An important property of the resulting functional minimization problems is that convexity is maintained. Therefore, the computational complexity of the resulting algorithms are not significantly increased. Examples are provided to demonstrate the characteristics of the algorithm
Evolution of entanglement within classical light states
We investigate the evolution of quantum correlations over the lifetime of a
multi-photon state. Measurements reveal time-dependent oscillations of the
entanglement fidelity for photon pairs created by a single semiconductor
quantum dot. The oscillations are attributed to the phase acquired in the
intermediate, non-degenerate, exciton-photon state and are consistent with
simulations. We conclude that emission of photon pairs by a typical quantum dot
with finite polarisation splitting is in fact entangled in a time-evolving
state, and not classically correlated as previously regarded
Novel single nucleotide polymorphism-based assay for genotyping Mycobacterium avium subsp. paratuberculosis
Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates
Improved fidelity of triggered entangled photons from single quantum dots
We demonstrate the on-demand emission of polarisation-entangled photon pairs
from the biexciton cascade of a single InAs quantum dot embedded in a GaAs/AlAs
planar microcavity. Improvements in the sample design blue shifts the wetting
layer to reduce the contribution of background light in the measurements.
Results presented show that >70% of the detected photon pairs are entangled.
The high fidelity of the (|HxxHx>+|VxxVx>)/2^0.5 state that we determine is
sufficient to satisfy numerous tests for entanglement. The improved quality of
entanglement represents a significant step towards the realisation of a
practical quantum dot source compatible with applications in quantum
information.Comment: 9 pages. Paper is available free of charge at
http://www.iop.org/EJ/abstract/1367-2630/8/2/029/, see also 'A semiconductor
source of triggered entangled photon pairs', R. M. Stevenson et al., Nature
439, 179 (2006
Probing the helical content of growth hormone-releasing factor analogs using electrospray ionization mass spectrometry
AbstractA series of growth hormone-releasing factor analogs have been studied by both circular dichroism and electrospray ionization mass spectrometry (ESI/MS). The peptides are 32 residues long and are known to adopt a random-coil structure in aqueous solution but become increasing helical as the proportion of organic solvent is increased. Deuterium exchange was observed as an increase in mass of the peptide, as measured by ESI/MS. Rates of exchange were measured and half-lives calculated for analogs containing amino acid substitutions designed to promote or discourage helix formation. Exchange was slower in peptides that are helical (as shown by circular dichroism) than in randomly coiled peptides. Solution conditions that favor helix formation also produced slower exchange rates. These studies suggest that ESI/MS can provide date about the extent and stability of helix formation
First evidence for a latitudinal body mass effect in extant Crocodylia and the relationships of their reproductive characters
Relationships between distribution patterns and body size have been documented in many endothermic taxa. However, the evidence for these trends in ectotherms generally is equivocal, and there have been no studies of effects in crocodylians specifically. Here, we examine the relationship between latitudinal distribution and body mass in 20 extant species of crocodylians, as well as the relationships between seven important reproductive variables. Using phylogenetically independent contrasts to inform generalized linear models, we provide the first evidence of a latitudinal effect on adult female body mass in crocodylians. In addition, we explore the relationships between reproductive variables including egg mass, hatchling mass and clutch size. We report no correlation between egg mass and clutch size, upholding previously reported within-species trends. We also find no evidence of a correlation between measures of latitudinal range and incubation temperature, contrasting with the trends found in turtles
An efficient system for reliably transmitting image and video data over low bit rate noisy channels
This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices
Why Major Programs Need Innovation Support Labs: An Example from the Space Shuttle Launch Program at KSC
For over 30 years the Kennedy Space Center (KSC) has processed the Space Shuttle; handling all hands-on aspects from receiving the Orbiter, External Tanks, Solid Rocket Booster Segments, and Payloads, through certification, check-out, and assembly, and ending with fueling, count-down, and launch. A team of thousands have worked this highly complicated, yet supremely organized, process and have, as a consequence, generated an exceptional amount of technology to solve a host of problems. This paper describes the contributions of one team that formed with the express purpose to help solve some of these diverse Shuttle ground processing problems
Interobserver agreement for neonatal seizure detection using multichannel EEG
Objective To determine the interobserver agreement (IOA) of neonatal seizure detection using the gold standard of conventional, multichannel EEG. Methods A cohort of full-term neonates at risk of acute encephalopathy was included in this prospective study. The EEG recordings of these neonates were independently reviewed for seizures by three international experts. The IOA was estimated using statistical measures including Fleiss' kappa and percentage agreement assessed over seizure events (event basis) and seizure duration (temporal basis). Results A total of 4066 h of EEG recordings from 70 neonates were reviewed with an average of 2555 seizures detected. The IOA was high with temporal assessment resulting in a kappa of 0.827 (95% CI: 0.769–0.865; n = 70). The median agreement was 83.0% (interquartile range [IQR]: 76.6–89.5%; n = 33) for seizure and 99.7% (IQR: 98.9–99.8%; n = 70) for nonseizure EEG. Analysis of events showed a median agreement of 83.0% (IQR: 72.9–86.6%; n = 33) for seizures with 0.018 disagreements per hour (IQR: 0.000–0.090 per hour; n = 70). Observers were more likely to disagree when a seizure was less than 30 sec. Overall, 33 neonates were diagnosed with seizures and 28 neonates were not, by all three observers. Of the remaining nine neonates with contradictory EEG detections, seven presented with low total seizure burden. Interpretation The IOA is high among experts for the detection of neonatal seizures using conventional, multichannel EEG. Agreement is reduced when seizures are rare or have short duration. These findings support EEG-based decision making in the neonatal intensive care unit, inform EEG interpretation guidelines, and provide benchmarks for seizure detection algorithms.Peer reviewe
A high-fat high-sugar diet predicts poorer hippocampal-related memory and a reduced ability to suppress wanting under satiety
Animal data indicate that greater intake of fats and sugars prevalent in a Western diet impairs hippocampal memory and tests of behavioral inhibition known to be related to hippocampal function (e.g., feature negative discrimination tasks). It has been argued that such high fat high sugar diets (HFS) impair the hippocampus, which then becomes less sensitive to modulation by physiological state. Thus retrieval of motivationally salient memories (e.g., when seeing or smelling food) occurs irrespective of state. Here we examine whether evidence of similar effects can be observed in humans using a correlational design. Healthy human participants (N = 94), who varied in their habitual consumption of a HFS diet, completed the verbal paired associate (VPA) test, a known hippocampal-dependent process, as well as liking and wanting ratings of palatable snack foods, assessed both hungry and sated. Greater intake of a HFS diet was significantly associated with a slower VPA learning rate, as predicted. Importantly, for those who regularly consumed a HFS diet, while reductions in liking and wanting occurred between hungry and sated states, the reduction in wanting was far smaller relative to liking. The latter effect was strongly related to VPA learning rate, suggestive of hippocampal mediation. In agreement with the animal literature, human subjects with a greater intake of a HFS diet show deficits in hippocampal-dependent learning and memory, and their desire to consume palatable food is less affected by physiological state – a process we suggest that is also hippocampal related
- …