63 research outputs found

    Mechanistic Target of Rapamycin Complex 1/S6 Kinase 1 Signals Influence T Cell Activation Independently of Ribosomal Protein S6 Phosphorylation

    Get PDF
    Ag-dependent activation of naive T cells induces dramatic changes in cellular metabolism that are essential for cell growth, division, and differentiation. In recent years, the serine/threonine kinase mechanistic target of rapamycin (mTOR) has emerged as a key integrator of signaling pathways that regulate these metabolic processes. However, the role of specific downstream effectors of mTOR function in T cells is poorly understood. Ribosomal protein S6 (rpS6) is an essential component of the ribosome and is inducibly phosphorylated following mTOR activation in eukaryotic cells. In the current work, we addressed the role of phosphorylation of rpS6 as an effector of mTOR function in T cell development, growth, proliferation, and differentiation using knockin and TCR transgenic mice. Surprisingly, we demonstrate that rpS6 phosphorylation is not required for any of these processes either in vitro or in vivo. Indeed, rpS6 knockin mice are completely sensitive to the inhibitory effects of rapamycin and an S6 kinase 1 (S6K1)–specific inhibitor on T cell activation and proliferation. These results place the mTOR complex 1-S6K1 axis as a crucial determinant of T cell activation independently of its ability to regulate rpS6 phosphorylation

    The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses

    Get PDF
    SummaryThe molecular mechanisms whereby the CD45 tyrosine phosphatase (PTPase) regulates T cell receptor (TCR) signaling responses remain to be elucidated. To investigate this question, we have reconstituted CD45 (encoded by Ptprc)-deficient mice, which display severe defects in thymic development, with five different expression levels of transgenic CD45RO, or with mutant PTPase null or PTPase-low CD45R0. Whereas CD45 PTPase activity was absolutely required for the reconstitution of thymic development, only 3% of wild-type CD45 activity restored T cell numbers and normal cytotoxic T cell responses. Lowering the CD45 expression increased CD4 lineage commitment. Peripheral T cells with very low activity of CD45 phosphatase displayed reduced TCR signaling, whereas intermediate activity caused hyperactivation of CD4+ and CD8+ T cells. These results are explained by a rheostat mechanism whereby CD45 differentially regulates the negatively acting pTyr-505 and positively acting pTyr-394 p56lck tyrosine kinase phosphorylation sites. We propose that high wild-type CD45 expression is necessary to dephosphorylate p56lck pTyr-394, suppressing CD4 T+ cell lineage commitment and hyperactivity

    Deletion of the protein tyrosine phosphatase PTPN22 for adoptive T cell therapy facilitates CTL effector function but promotes T cell exhaustion

    Get PDF
    Background Adoptive cell therapy (ACT) is a promising strategy for treating cancer, yet it faces several challenges such as lack of long term protection due to T cell exhaustion induced by chronic TCR stimulation in the tumor microenvironment. One benefit of ACT, however, is that it allows for cellular manipulations, such as deletion of the phosphotyrosine phosphatase non-receptor type 22 (PTPN22), which improves CD8+ T cell anti-tumor efficacy in ACT. We tested whether Ptpn22KO cytolytic T cells (CTL) were also more effective than Ptpn22WT CTL in controlling tumors in scenarios that favor T cell exhaustion. Methods Tumor control by Ptpn22WT and Ptpn22KO CTL was assessed following adoptive transfer of low numbers of CTL to mice with subcutaneously implanted MC38 tumors. Tumor infiltrating lymphocytes were isolated for analysis of effector functions. An in vitro assay was established to compare CTL function in response to acute and chronic re-stimulation with antigen-pulsed tumor cells. The expression of effector and exhaustion-associated proteins by Ptpn22WT and Ptpn22KO T cells was followed over time in vitro and in vivo using the ID8 tumor model. Finally, the effect of PD-1 and TIM-3 blockade on Ptpn22KO CTL tumor control was assessed using monoclonal antibodies and CRISPR/Cas9-mediated knockout. Results Despite having improved effector function at the time of transfer, Ptpn22KO CTL became more exhausted than Ptpn22WT CTL, characterized by more rapid loss of effector functions, and earlier and higher expression of inhibitory receptors (IRs), particularly the terminal exhaustion marker TIM-3. TIM-3 expression, under the control of the transcription factor NFIL3, was induced by IL-2 signaling which was enhanced in Ptpn22KO cells. Anti-tumor responses of Ptpn22KO CTL were improved following PD-1 blockade in vivo, yet knockout or antibody-mediated blockade of TIM-3 did not improve but further impaired tumor control, indicating TIM-3 signaling itself did not drive the diminished function seen in Ptpn22KO CTL. Conclusions This study questions whether TIM-3 plays a role as an IR and highlights that genetic manipulation of T cells for ACT needs to balance short term augmented effector function against the risk of T cell exhaustion in order to achieve longer term protection. What is already known on this topic • T cell exhaustion in the tumor microenvironment is a major factor limiting the potential success of adoptive cell therapy (ACT) in the treatment of solid tumors. • Deletion of the phosphatase PTPN22 in CD8+ T cells improves their response to tumors, but it is not known whether this influences development of exhaustion. What this study adds • Under conditions which promote exhaustion, CTL lacking PTPN22 exhaust more rapidly than WT cells, despite displaying enhanced effector function in their initial response to antigen. • Ptpn22KO CTL express high levels of the inhibitory receptor TIM-3, but TIM-3 signaling does not directly contribute to Ptpn22KO CTL dysfunction. • Ptpn22KO T cells are more responsive to IL-2 through JAK-STAT signaling, which induces TIM-3 expression via the transcription factor NFIL3. How this study might affect research, practice or policy • Strategies aimed at augmenting T cell effector function for ACT should balance improved responses against an increased risk of T cell exhaustion

    Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8+ T cell trafficking

    Get PDF
    Inhibition of immune checkpoints programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) on T cells results in durable antitumor activity in melanoma patients. Despite high frequency of melanoma brain metastases (BrM) and associated poor prognosis, the activity and mechanisms of immune checkpoint inhibitors (ICI) in metastatic tumors that develop within the “immune specialized” brain microenvironment, remain elusive. We established a melanoma tumor transplantation model with intracranial plus extracranial (subcutaneous) tumor, mimicking the clinically observed coexistence of metastases inside and outside the brain. Strikingly, intracranial ICI efficacy was observed only when extracranial tumor was present. Extracranial tumor was also required for ICI-induced increase in CD8+ T cells, macrophages, and microglia in brain tumors, and for up-regulation of immune-regulatory genes. Combined PD-1/CTLA-4 blockade had a superior intracranial efficacy over the two monotherapies. Cell depletion studies revealed that NK cells and CD8+ T cells were required for intracranial anti–PD-1/anti–CTLA-4 efficacy. Rather than enhancing CD8+ T cell activation and expansion within intracranial tumors, PD-1/CTLA-4 blockade dramatically (∼14-fold) increased the trafficking of CD8+ T cells to the brain. This was mainly through the peripheral expansion of homing-competent effector CD8+ T cells and potentially further enhanced through up-regulation of T cell entry receptors intercellular adhesion molecule 1 and vascular adhesion molecule 1 on tumor vasculature. Our study indicates that extracranial activation/release of CD8+ T cells from PD-1/CTLA-4 inhibition and potentiation of their recruitment to the brain are paramount to the intracranial anti–PD-1/anti–CTLA-4 activity, suggesting augmentation of these processes as an immune therapy-enhancing strategy in metastatic brain cancer

    Biofilm Development on Caenorhabditis elegans by Yersinia Is Facilitated by Quorum Sensing-Dependent Repression of Type III Secretion

    Get PDF
    Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Regulation of T Cell Activation and Metabolism by Transforming Growth Factor-Beta

    Get PDF
    Transforming growth factor beta (TGFβ) receptor signalling regulates T cell development, differentiation and effector function. Expression of the immune-associated isoform of this cytokine, TGFβ1, is absolutely required for the maintenance of immunological tolerance in both mice and humans, whilst context-dependent TGFβ1 signalling regulates the differentiation of both anti- and pro-inflammatory T cell effector populations. Thus, distinct TGFβ-dependent T cell responses are implicated in the suppression or initiation of inflammatory and autoimmune diseases. In cancer settings, TGFβ signals contribute to the blockade of anti-tumour immune responses and disease progression. Given the key functions of TGFβ in the regulation of immune responses and the potential for therapeutic targeting of TGFβ-dependent pathways, the mechanisms underpinning these pleiotropic effects have been the subject of much investigation. This review focuses on accumulating evidence suggesting that modulation of T cell metabolism represents a major mechanism by which TGFβ influences T cell immunity

    Innate lymphoid cells in type 2 immune responses

    No full text
    In recent years, several distinct innate lymphoid cell populations (ILC) have been characterized in mice and humans. Group 2 ILC function as a rapid responder population in type 2 immune responses. Thus, a wealth of data has implicated an important role for ILC2 in immunity to parasitic infection and in immune pathology in inflammatory and allergic responses. In this review, we describe recent progress in our understanding of the development and ontogeny of ILC2 populations and the mechanisms by which these cells function in a variety of infection and disease settings. Finally, we emphasize recent findings indicating functional interactions between these innate cells and their adaptive CD4+ Th2 cell counterparts

    Complementary and alternative medicine in the treatment of chronic liver disease

    No full text
    Interest in and use of complementary and alternative medicines (CAM) in the treatment of chronic liver diseases has increased in the past decade. However, this has not been supported by a significant increase in sound clinical research evidence for their efficacy. The research literature is growing, providing improved knowledge on population use of CAM, possible mechanisms of action of a large range of complementary and alternative medications, and possible specific indications for these agents in patients with liver disease. Although curative potential for CAM has not been documented consistently in any liver disorder, it is possible to identify anti-inflammatory activity and cytoprotective capacity for a number of agents from different branches of the world of CAM. Evidence grows for potential harm from an increasing number of compounds. Concurrently, clarity is increasing in relation to which specific constituents cause the harm and the mechanisms by which damage is produced

    Interleukin-33 and the function of innate lymphoid cells

    No full text
    Interleukin (IL)-33 is a member of the IL-1 cytokine family that has been shown to play an important role in the induction and effector phases of type 2 immune responses. Both innate and adaptive immunity are regulated by IL-33, and many studies have shown disease-associated functions for this cytokine. Recently, IL-33 has been implicated in the function of novel innate lymphocyte populations that regulate both protective responses in parasitic infections and allergic airway inflammation. Here, we discuss recent data highlighting the dual roles of IL-33 in protective and deleterious immune responses
    corecore