981 research outputs found

    Absolute properties of the low-mass eclipsing binary CM Draconis

    Get PDF
    Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M1=0.2310+/-0.0009 Msun, M2=0.2141+/-0.0010 Msun, R1=0.2534+/-0.0019 Rsun, and R2=0.2396+/-0.0015 Rsun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies reported previously for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.Comment: 19 pages, 9 figures. Accepted for publication in Ap

    Building an e-Science Portal for Librarians: A Model of Collaboration

    Get PDF
    The e-Science Portal for New England Librarians (http://esciencelibrary.umassmed.edu) is an openly accessible website targeted specifically for librarians working in research institutions that generate, share, store and/or use data for basic scientific research in the health, biological, and physical sciences. The portal provides links to information on e-Science, e-Science librarianship, current practices, and science disciplines. The portal’s e-Science Community blog http://esciencecommunity.umassmed.edu serves as a bulletin and discussion forum for the latest news, upcoming events, and commentaries. While the portal was originally developed to provide e-Science information to New England Librarians, its openly accessible content is relevant to librarians interested in networked science worldwide. Content for the e-Science Portal for New England Librarians is contributed by a team of nine content editors who are science and medical librarians from diverse New England research libraries. Each content editor identifies, annotates, and aggregates links to resources for a designated focus area of the portal and submits them to the portal’s project coordinator for further review. Following this review, the project coordinator and the portal development team plan the organization and layout of the content in the relevant subject web pages of the portal. The effective collaboration among the content editors and the portal design team has been crucial to the development of an e-Science Portal that provides the essential resources and tools needed by librarians engaging in networked science. The focus of this paper is the model of collaboration adopted by the portal’s design team and content editors

    Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting inimosugars or by modification of their chemical structure

    Get PDF
    The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001). The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05). It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal effect in vivopublishersversionPeer reviewe

    Geomagnetic Field Tracker for Deorbiting a CubeSat Using Electric Thrusters

    Get PDF
    no abstrac

    The 21 cm Signature of Shock Heated and Diffuse Cosmic String Wakes

    Full text link
    The analysis of the 21 cm signature of cosmic string wakes is extended in several ways. First we consider the constraints on GμG\mu from the absorption signal of shock heated wakes laid down much later than matter radiation equality. Secondly we analyze the signal of diffuse wake, that is those wakes in which there is a baryon overdensity but which have not shock heated. Finally we compare the size of these signals compared to the expected thermal noise per pixel which dominates over the background cosmic gas brightness temperature and find that the cosmic string signal will exceed the thermal noise of an individual pixel in the Square Kilometre Array for string tensions Gμ>2.5×108G\mu > 2.5 \times 10^{-8}.Comment: 10 pages, 4 figures, Appendix added, version published in JCA

    Short term persistence of human papillomavirus and risk of cervical precancer and cancer: population based cohort study

    Get PDF
    Objective To evaluate the cumulative incidence of cervical intraepithelial neoplasia II or worse (grade II+) or cervical intraepithelial neoplasia grade III+ after short term persistence of prevalently detected carcinogenic human papillomavirus (HPV)

    Simulation-based Inference for Exoplanet Atmospheric Retrieval: Insights from winning the Ariel Data Challenge 2023 using Normalizing Flows

    Full text link
    Advancements in space telescopes have opened new avenues for gathering vast amounts of data on exoplanet atmosphere spectra. However, accurately extracting chemical and physical properties from these spectra poses significant challenges due to the non-linear nature of the underlying physics. This paper presents novel machine learning models developed by the AstroAI team for the Ariel Data Challenge 2023, where one of the models secured the top position among 293 competitors. Leveraging Normalizing Flows, our models predict the posterior probability distribution of atmospheric parameters under different atmospheric assumptions. Moreover, we introduce an alternative model that exhibits higher performance potential than the winning model, despite scoring lower in the challenge. These findings highlight the need to reevaluate the evaluation metric and prompt further exploration of more efficient and accurate approaches for exoplanet atmosphere spectra analysis. Finally, we present recommendations to enhance the challenge and models, providing valuable insights for future applications on real observational data. These advancements pave the way for more effective and timely analysis of exoplanet atmospheric properties, advancing our understanding of these distant worlds.Comment: Conference proceeding for the ECML PKDD 202

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Impact of EMA regulatory label changes on systemic diclofenac initiation, discontinuation, and switching to other pain medicines in Scotland, England, Denmark, and The Netherlands

    Get PDF
    PURPOSE: In June 2013 a European Medicines Agency referral procedure concluded that diclofenac was associated with an elevated risk of acute cardiovascular events and contraindications, warnings, and changes to the product information were implemented across the European Union. This study measured the impact of the regulatory action on the prescribing of systemic diclofenac in Denmark, The Netherlands, England, and Scotland. METHODS: Quarterly time series analyses measuring diclofenac prescription initiation, discontinuation and switching to other systemic nonsteroidal anti‐inflammatory (NSAIDs), topical NSAIDs, paracetamol, opioids, and other chronic pain medication in those who discontinued diclofenac. Absolute effects were estimated using interrupted time series regression. RESULTS: Overall, diclofenac prescription initiations fell during the observation periods of all countries. Compared with Denmark where there appeared to be a more limited effect, the regulatory action was associated with significant immediate reductions in diclofenac initiation in The Netherlands (−0.42%, 95% CI, −0.66% to −0.18%), England (−0.09%, 95% CI, −0.11% to −0.08%), and Scotland (−0.67%, 95% CI, −0.79% to −0.55%); and falling trends in diclofenac initiation in the Netherlands (−0.03%, 95% CI, −0.06% to −0.01% per quarter) and Scotland (−0.04%, 95% CI, −0.05% to −0.02% per quarter). There was no significant impact on diclofenac discontinuation in any country. The regulatory action was associated with modest differences in switching to other pain medicines following diclofenac discontinuation. CONCLUSIONS: The regulatory action was associated with significant reductions in overall diclofenac initiation which varied by country and type of exposure. There was no impact on discontinuation and variable impact on switching
    corecore