2,518 research outputs found
A Photometric Survey for Variables and Transits in the Field of Praesepe with KELT
The Kilodegree Extremely Little Telescope (KELT) project is a small aperture,
wide-angle search for planetary transits of solar-type stars. In this paper, we
present the results of a commissioning campaign with the KELT telescope to
observe the open cluster Praesepe for 34 nights in early 2005. Lightcurves were
obtained for 69,337 stars, out of which we identify 58 long period variables
and 152 periodic variables. Sixteen of these are previously known as variable,
yielding 194 newly discovered variable stars for which we provide properties
and lightcurves. We also searched for planetary-like transits, finding four
transit candidates. Follow-up observations indicate that two of the candidates
are astrophysical false positives, with two candidates remaining as potential
planetary transits.Comment: 45 pages, 16 figures. Submitted to AJ. PDF version with full
resolution figures located at
http://www.astronomy.ohio-state.edu/~pepper/kelt.pd
Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study
© 2017 American Chemical Society. Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO 3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca 3 (VO 4 ) 2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO 3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse
Microwave and Millimeter Wave Techniques
Contains reports on three research projects.Joint Services Electronics Program (Contract DAAB07-75-C-1346
The impact of the demographic transition on dengue in Thailand: Insights from a statistical analysis and mathematical modeling
Background: An increase in the average age of dengue hemorrhagic fever (DHF) cases has been reported in Thailand. The cause of this increase is not known. Possible explanations include a reduction in transmission due to declining mosquito populations, declining contact between human and mosquito, and changes in reporting. We propose that a demographic shift toward lower birth and death rates has reduced dengue transmission and lengthened the interval between large epidemics. Methods and Findings: Using data from each of the 72 provinces of Thailand, we looked for associations between force of infection (a measure of hazard, defined as the rate per capita at which susceptible individuals become infected) and demographic and climactic variables. We estimated the force of infection from the age distribution of cases from 1985 to 2005. We find that the force of infection has declined by 2% each year since a peak in the late 1970s and early 1980s. Contrary to recent findings suggesting that the incidence of DHF has increased in Thailand, we find a small but statistically significant decline in DHF incidence since 1985 in a majority of provinces. The strongest predictor of the change in force of infection and the mean force of infection is the median age of the population. Using mathematical simulations of dengue transmission we show that a reduced birth rate and a shift in the population's age structure can explain the shift in the age distribution of cases, reduction of the force of infection, and increase in the periodicity of multiannual oscillations of DHF incidence in the absence of other changes. Conclusions: Lower birth and death rates decrease the flow of susceptible individuals into the population and increase the longevity of immune individuals. The increase in the proportion of the population that is immune increases the likelihood that an infectious mosquito will feed on an immune individual, reducing the force of infection. Though the force of infection has decreased by half, we find that the critical vaccination fraction has not changed significantly, declining from an average of 85% to 80%. Clinical guidelines should consider the impact of continued increases in the age of dengue cases in Thailand. Countries in the region lagging behind Thailand in the demographic transition may experience the same increase as their population ages. The impact of demographic changes on the force of infection has been hypothesized for other diseases, but, to our knowledge, this is the first observation of this phenomenon
Ozone depletion, greenhouse gases, and climate change
This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive
Planetary Candidates Observed by Kepler IV: Planet Sample From Q1-Q8 (22 Months)
We provide updates to the Kepler planet candidate sample based upon nearly
two years of high-precision photometry (i.e., Q1-Q8). From an initial list of
nearly 13,400 Threshold Crossing Events (TCEs), 480 new host stars are
identified from their flux time series as consistent with hosting transiting
planets. Potential transit signals are subjected to further analysis using the
pixel-level data, which allows background eclipsing binaries to be identified
through small image position shifts during transit. We also re-evaluate Kepler
Objects of Interest (KOI) 1-1609, which were identified early in the mission,
using substantially more data to test for background false positives and to
find additional multiple systems. Combining the new and previous KOI samples,
we provide updated parameters for 2,738 Kepler planet candidates distributed
across 2,017 host stars. From the combined Kepler planet candidates, 472 are
new from the Q1-Q8 data examined in this study. The new Kepler planet
candidates represent ~40% of the sample with Rp~1 Rearth and represent ~40% of
the low equilibrium temperature (Teq<300 K) sample. We review the known biases
in the current sample of Kepler planet candidates relevant to evaluating planet
population statistics with the current Kepler planet candidate sample.Comment: 12 pages, 8 figures, Accepted ApJ Supplemen
Crew Exploration Vehicle Ascent Abort Coverage Analysis
An important element in the design of NASA's Crew Exploration Vehicle (CEV) is the consideration given to crew safety during various ascent phase failure scenarios. To help ensure crew safety during this critical and dynamic flight phase, the CEV requirements specify that an abort capability must be continuously available from lift-off through orbit insertion. To address this requirement, various CEV ascent abort modes are analyzed using 3-DOF (Degree Of Freedom) and 6-DOF simulations. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage using the current baseline vehicle design. Factors such as abort system performance, crew load limits, thermal environments, crew recovery, and vehicle element disposal are investigated to determine if the current vehicle requirements are appropriate and achievable. Sensitivity studies and design trades are also completed so that more informed decisions can be made regarding the vehicle design. An overview of the CEV ascent abort modes is presented along with the driving requirements for abort scenarios. The results of the analysis completed as part of the requirements validation process are then discussed. Finally, the conclusions of the study are presented, and future analysis tasks are recommended
- …
