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An important element in the design of NASA’s Crew Exploration Vehicle (CEV) 
is the consideration given to crew safety during various ascent phase failure 
scenarios.  To help ensure crew safety during this critical and dynamic flight 
phase, the CEV requirements specify that an abort capability must be 
continuously available from lift-off through orbit insertion.  To address this 
requirement, various CEV ascent abort modes are analyzed using 3-DOF 
(Degree Of Freedom) and 6-DOF simulations.  The analysis involves an 
evaluation of the feasibility and survivability of each abort mode and an 
assessment of the abort mode coverage using the current baseline vehicle 
design.  Factors such as abort system performance, crew load limits, thermal 
environments, crew recovery, and vehicle element disposal are investigated to 
determine if the current vehicle requirements are appropriate and achievable.  
Sensitivity studies and design trades are also completed so that more informed 
decisions can be made regarding the vehicle design.  An overview of the CEV 
ascent abort modes is presented along with the driving requirements for abort 
scenarios.  The results of the analysis completed as part of the requirements 
validation process are then discussed.  Finally, the conclusions of the study are 
presented, and future analysis tasks are recommended. 

Figure 1: CEV / CLV Diagram

 

INTRODUCTION 

VEHICLE DESCRIPTION 
The Crew Launch Vehicle (CLV) shown in Figure 1 is 

comprised of several elements, some of which are derived from 
components used in other programs.   The specifications listed in 
this section are current as of October 2006; subsequent updates are 
expected. 

The first stage is an upgraded Space Shuttle Solid Rocket 
Booster (SRB) featuring an additional (fifth) segment. The five-
segment  SRB is 157.4 feet long, just over eight feet longer than the 
four-segment Space Shuttle SRB. Thrust at liftoff is about 16% 
 higher than that of the Space Shuttle SRB. This stage burns for 
about 130  seconds. An interstage structure connects the first and 
second stages, and  features a reaction control system (RCS) to 
provide roll control during first  stage flight and 3-axis rate 
damping after upper stage cut-off. 
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The upper stage engine is a J-2X expected to provide approximately 274,000 lbs of vacuum thrust for 51.6 
degree inclination International Space Station (ISS) missions.  The J-2X may be scaled up to 294,000 lbs of vacuum 
thrust for the lunar missions.   This J-2X is a modern derivative of the Apollo-era J-2 engine used in  the second and 
third stages of the Saturn V. The upper stage structure,  constructed with aluminum-lithium alloy, is 87.8 feet long, 
and 18 feet in  diameter, and contains the LH2 and LOX tanks. The upper stage engine is  air-started at about 
200,000 feet, and nominally burns for over 7 minutes. Above the  upper stage are an instrument unit and a 
spacecraft adapter for the CEV. 

The  payload is the Crew Exploration Vehicle (Orion), comprised of the Service Module  (SM) and the Crew 
Module (CM). A Launch Abort System (LAS) is attached to the  CM until it is jettisoned in second stage.  The total 
vehicle length is about 321 feet, and the  weight at liftoff is about 2 million lbs. 

ABORT MODE OVERVIEW 
The reason for an ascent abort falls into one of three general categories: (1) a partial or total loss of vehicle 

propulsion, (2) a loss of vehicle control, or (3) a CEV systems failure which results in the inability to achieve orbit. 
Several abort modes are required to encompass the velocity, altitude, atmospheric, and vehicle configuration 
changes that occur during ascent. These modes provide abort coverage extending from the launch pad until the CEV 
achieves a sustainable orbit. 

Mode I aborts, also referred to as Launch Abort System (LAS) Aborts, are performed using the LAS and remain 
a viable option until the LAS is jettisoned at a pre-designated point in second stage.  During Mode 1 aborts, the 
LAS is used to pull the Crew Module (CM) away from the Crew Launch Vehicle (CLV) and Service Module (SM). 
Mode I aborts are characterized by high aerodynamic loads induced by low altitude maneuvers and high 
accelerations caused by the launch escape motor.  The analysis for Mode I aborts focuses on the relative motion 
between the CEV and the launch vehicle for different failure scenarios and on the crew loads that are experienced 
due to the high acceleration forces. 

Mode II aborts, also referred to as Untargeted Abort Splashdowns (UAS), do not utilize the LAS.  Instead, the 
CLV upper stage engine is shut down and the SM reaction control system is used to provide adequate clearance 
between the launch vehicle and CEV.  Once the CEV is sufficiently far away from the launch vehicle, the CM 
separates from the SM, is maneuvered for re-entry, and descends using parachutes to a safe landing location.  For 
Mode II aborts, the analysis described focuses on the CM splashdown locations and the crew loads experienced 
during reentry. 

Mode III aborts, commonly known as Targeted Abort Landings (TAL), involve late second stage failures where 
the CEV trajectory is modified via a targeted SM engine burn followed by a guided entry to a landing site.  The goal 
of these trajectory control efforts is to select a landing area that maximizes the chances of crew survival and 
recovery but protects for crew loads and SM thermal constraints.  Due to the thermal environment associated with 
“drooping” into the atmosphere following an upper stage engine failure, the focus of the Mode III analysis is the 
droop altitude  for various scenarios and the ways in which the droop effect can be minimized. 

The last type of abort mode is Mode IV, which is an Abort-To-Orbit (ATO).  This mode describes cases where 
an abort is performed following an early shutdown of the upper stage when the SM has sufficient capability to 
complete a safe orbit insertion and de-orbit burn.  Similar to the TAL aborts, the ATO cases must protect the SM 
from adverse thermal conditions.  For the Mode IV abort, the analysis looks at the amount of propellant (or ΔV) 
required to achieve a sustainable orbit, and similar to TAL, focuses primarily on the droop effects. 

ABORT REQUIREMENTS AND CONSTRAINTS 
The driving requirements for the abort coverage subtask are as follows: 
a. CV0039: The CEV shall provide abort capability starting on the launch pad with the arming of the Launch 

Abort System through operations in Low Earth Orbit. 

b. CV0042: The CEV Launch Abort System shall provide an axial thrust, as measured at sea level (TBR) and 
30 (TBR) degree propellant mean bulk temperature conditions, of not less than 15 (TBR-002-12) times the 
combined weight of the CM+LAS for a duration of not less than 2 (TBR-002-149) seconds. 

c. CV0048: The CEV shall translate from the CLV following separation. 
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d. CV0049: The CEV shall perform an Earth orbit insertion after being delivered to the mission-specific 
Earth Ascent Staging Target by the CLV. 

e. CV0061: The CEV shall provide automated abort to orbit targeting and maneuvers. 

f. CV0449: For ISS crew missions, the CEV shall provide ascent aborts that result in landing outside of the 
Downrange Abort Exclusion Zone. 

g. CV0457: The CEV shall be able to perform all aborts without relying on thrust from the CLV. 

3-DOF LATE ASCENT ABORT COVERAGE ANALYSIS 
The 3-DOF analysis of late ascent abort scenarios is conducted to determine the impact of thrust-to-weight ratio 

and abort response time on the feasibility and performance of UAS, TAL, and ATO abort scenarios.  The analysis is 
conducted using the Optimal Trajectories through Implicit Simulation (OTIS 4) trajectory optimization software.  
The analysis is based on nominal 28.5o (exploration/lunar) and 51.6o (ISS) ascent trajectories from CLV Design 
Analysis Cycle 1, Rev. 2.  The results shown here are those for the 51.6o ascent aborts only.  The results for 28.5o 
mission are detailed in Reference 1, CEV RAC-2 TDS-04-012/Subtask 5:  Late Ascent Abort Modeling Sensitivities 
Analysis. 

 Ascent trajectories from the bounds of launch windows are also examined to determine the impact of launch 
windows on abort feasibility and performance.  The CEV must be capable of performing an abort during launch 
such that the crew is guaranteed not to land in the North Atlantic Downrange Abort Exclusion Zone (DAEZ), which 
extends from 150 nmi east of St. John’s, Newfoundland to 150 nmi west of Shannon, Ireland.  The thrust-to-weight 
required to perform an abort while avoiding the DAEZ is the largest anticipated for any CEV mission, and thus 
drives the sizing of the Orion Main Engine (OME). 

UNTARGETED ABORT SPLASHDOWN ENVELOPE ANALYSIS 
Abort splashdown envelopes are computed to determine potential recovery locations as a function of abort 

time.  The operational sequence assumed for a UAS abort is as follows: 
 

• Abort is initiated.  The CEV is separated from the upper stage. 
• The CEV coasts to sufficiently clear the upper stage and reorient for SM jettison. 
• The SM is jettisoned, and the CM orients itself for reentry above 300,000 ft. 
• The CM reenters the atmosphere.  Crossrange can be controlled with bank angle, which is limited to +/- 

90o to prevent the crew from going ‘heads-down.’ 
 
Figure 2 shows the progression of cross-range envelopes for UAS aborts off the 51.6o inclination mission 

trajectory.  The evolution of potential splashdown locations as the time of abort initiation is moved later in the 
ascent is illustrated.  The launch window duration for a 51.6o mission is 20 minutes.  If the CM reentry can be 
controlled with bank, then the potential splashdown corridor can be narrowed to minimize the number of recovery 
assets needed while still providing adequate response time for crew recovery. 
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Figure 2: Crossrange Envelopes for 51.6o UAS aborts for 300 through 565 seconds 

 
The data in Table 1 shows when the latest possible Mode II abort to the St. John’s recovery area occurs as 

defined by the DAEZ requirement.  The first two rows show the DAEZ entry times for non-propulsive Mode II 
aborts, which are not referred to as UAS aborts.  The ballistic case uses a constant rotation in bank angle to cancel 
out any effect from the lift vector.  The optimal bank reentry type is allowed to move the bank angle through the 
range of +/- 90o.  The ability to control the reentry location with bank effectively allows energy to be removed from 
the trajectory with bank control, and the CEV thus can land within 150 nmi of St. John’s at a somewhat later abort 
time.  Using a banking reentry delays the reentry into the DAEZ by about 1.5 seconds.   

____ Reference Trajectory 
____ Launch Window Opening 
____ Launch Window Closing 

Table 1: Latest Possible Mode II Aborts 

 
 

 
T/W ratio Reentry type Ignition delay (sec) Latest Mode II abort Time (sec) 

0.0  Optimal bank N/A 560.56 

0.0 Ballistic N/A 559.04 

0.2 Optimal bank 15 565.02 

0.2 Optimal bank 40 564.04 

0.3 Optimal bank 15 566.27 

0.3 Optimal bank 40 564.74 

 

TARGETED ABORT LANDING AND ABORT-TO-ORBIT PERFORMANCE ANALYSIS 
 
Targeted abort landings are assessed using the following operational sequence: 
 

• Abort is initiated.  The CEV is separated from the upper stage. 
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• The CEV coasts to sufficiently clear the upper stage and reorient for SM jettison.  Coast durations of 15 
and 40 seconds are examined to determine the impact of the coast duration on the availability of TAL 
aborts. 

• The CEV performs a main engine burn to loft the vehicle downrange to the landing site while maintaining 
an altitude of at least 335,000 ft.  The altitude constraint is used as an approximation to prevent excess 
aerodynamic heating until a more integrated analysis can be performed. 

• The SM is jettisoned and the CM orients itself for reentry above 300,000 ft.  This phase must be at least 40 
seconds in duration to provide time for adequate CM/SM separation before reentry. 

• The CM reenters the atmosphere.  Crossrange can be controlled with bank angle, which is limited to +/- 
90o to prevent the crew from going ‘heads-down.’  The CM is constrained to land within 150 nmi of 
Shannon, Ireland for an ISS mission abort (or Amilcar Cabral Airport in Cape Verde for an exploration 
mission abort). 

 
Abort-To-Orbit scenarios are assessed assuming the following operational sequence: 
 

• Abort is initiated.  The CEV is separated from the upper stage. 
• The CEV coasts to sufficiently clear the upper stage and reorient for SM jettison.  Coast durations of 15 

and 40 seconds are examined to determine the impact of the coast duration on the availability of ATO 
aborts. 

• The CEV performs a main engine burn to increase vehicle apogee to approximately 100 nmi while 
maintaining an altitude of at least 335,000 ft.  The altitude constraint is used as an approximation to 
prevent excess aerodynamic heating until a more integrated analysis can be performed 

• The CEV coast until it has nearly reached apogee.  The exact duration to this phase is controlled by the 
optimizer. 

• The CEV performs a main engine burn to insert into a 100 x 100 nmi orbit.  
 

Analysis indicates that the earliest feasible TAL and the earliest feasible ATO occur at approximately the same 
time, within one second of each other.  For the most part, launch window does not appear to have much of an effect 
on when TAL and ATO become available.  The table below shows the earliest feasible TAL and ATO times for the 
51.6o mission.  The earliest feasible aborts for the window closing cases occur substantially later than those for the 
inplane case.  This differs from what is observed in the 28.5o data.  The launch window data is from an older design 
analysis cycle than the window inplane trajectory, and thus may need to be updated.  Table 2 lists the earliest 
possible TAL and ATO abort capability based on the 3-DOF analysis. 
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Coupled with the latest possible UAS abort times from Table 1 above, currently there is an abort coverage gap 
for non-propulsive UAS aborts except in the T/W = 0.3, 15 second initial coast case.  If propulsion can be used to 
delay the vehicles entry into the DAEZ, then there is only a gap in the T/W = 0.2, 40 second initial coast case.  
However, the risk associated with performing an OME burn and still having time to prepare for the reentry interface 
needs to undergo further assessment to determine if this is an acceptable scenario. 

 
Figure 3: Delta-V vs. Abort Initiation Time for TAL and ATO, 51.6o Inplane Launch 

 
Figure 3 shows the delta-V requirements for TAL and ATO for the 51.6o mission, assuming inplane launch.  The 

TAL delta-V eventually drops to zero, when Shannon can be reached without any propulsion from the service 
module.  It increases again once the CEV has overflown Shannon, since OTIS is attempting a retrograde maneuver 
to pull the landing point back to Shannon.  The left-most point on each curve is the earliest abort that was found for 
the given thrust-to-weight ratio and ignition delay time.  As expected, higher thrust-to-weight ratios and shorter 
ignition delay times yield earlier aborts.  The delta-V required for an ATO is substantially higher than that for TAL.  
Since the propellant requirement for the 51.6o mission is driven by the abort delta-V, it may be desirable to load the 
Service Module with enough propellant to accomplish TAL and delay the ATO window until later in the ascent.  
This would increase the thrust-to-weight of the CEV for a given engine size, and thus move the first feasible abort 
capability earlier.   
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6-DOF ASCENT ABORT COVERAGE ANALYSIS 
The Architecture for Exploration Studies (ARES) 6-DOF multi-body simulation was utilized to assess each of 

the four different ascent abort modes.  The baseline for the analysis consists of a 51.6° inclination International 
Space Station (ISS) mission with a nominal ascent trajectory and vehicle configuration based on Design Analysis 
Cycle (DAC)-0 Rev. 0. 

LAS RELATIVE MOTION ANALYSIS 
To ensure that a successful LAS abort is achievable, the relative motion between the Launch Abort Vehicle 

(LAV, i.e., the combined CM and LAS configuration) and the stack (i.e., the entire CLV / CEV configuration minus 
the LAV) is analyzed for various LAS abort cases.  In addition, the assessment also analyzes the relative motion 
between the CM and the LAS following abort initiation and subsequent LAS jettison.  Relative motion for a 
nominal jettison of the LAS was not explored in this analysis.  Five different abort initiation time regions were 
analyzed as part of this initial study.  The LAS abort regions analyzed are as follows:  (1) pad abort, (2) abort at 
maximum LAV separation drag, (3) low altitude (i.e., approximately 30 kft) abort, (4) abort at maximum dynamic 
pressure (i.e., max-q), and (5) high altitude (i.e., approximately 240 kft) abort.  Due to the large number of 
dispersions that could impact the capability of the LAS and crew survivability, a Monte Carlo analysis was required 
to gain confidence in the current CEV abort requirements.  To analyze the relative motion, the distance between two 
points, one on each vehicle element, is estimated based on the simulated trajectory of each body.  For the relative 
motion between the LAV and the stack, the two points selected correspond to the midpoints on the central axes of 
the LAV and the stack.  For the relative motion between the CM and the LAS, the midpoints of the CM and LAS 
were used.  To account for the shape of the body and any other limiting factors, a minimum safe distance was 
assumed.  For the relative motion between the LAV and the stack, the minimum safe distance was assumed to be 
approximately 500 ft.  For the CM and LAS relative motion, the safe distance was assumed to be 375 ft.  The thrust 
capability of the LAS is assumed to be equal to 15 times the initial weight of the LAV at the start of the burn.  For 
this initial analysis, the escape motor thrust is held constant for two seconds after abort initiation and then 
instantaneously reduced back to zero. 

The analysis results indicate that adequate separation can be achieved for all of the pad, max drag, and high 
altitude abort times.  However, for certain Monte Carlo cases with the other two abort times, the LAV separates 
adequately from the stack and then the separation distance decreases below the minimum safe distance a few 
seconds later.  The reduction is separation distance occurs due to the fact that after escape motor burnout, the speed 
of the LAV drops well below that of the stack, which is continuing to thrust.  Since both vehicles are traveling in 
more or less the same plane, the stack catches up with the LAV.  For the low altitude abort time, 93% of the 
simulation runs drop below the safe distance of 500 ft after LAS burnout.  The analysis shows a strong correlation 
between the offset angle of the escape motor thrust and the reduction in separation distance after LAS burnout.  The 
larger offset angles result in larger pitching moments, which cause the vehicle to turn out of plane and avoid the 
path of the stack, thereby improving the overall relative motion.  A similar phenomenon is observed for the relative 
motion between the CM and the LAS after LAS jettison.  For the max-q abort time, 64% of the runs violate the 
minimum safe distance of 375 ft due to the reduction in separation distance after LAS burnout.  Again, by inducing 
an out of plane pitching moment, the overall relative motion can be improved. 

LAS CREW G-LOAD ANALYSIS 
With a high thrust LAS escape motor, which is required to escape the potential threat of debris and overpressure 

caused by first stage failure events, the crew may be exposed to high g-loads during LAS aborts.  This study 
assesses crew loads and vehicle rates during these LAS aborts.  At the time of this analysis, the CEV requirements 
call for a LAS escape motor with a thrust-to-weight ratio equal to 15 (at sea level).  As mentioned in the relative 
motion section, the ARES simulation assumes this same thrust-to-weight.  Since the simulation assumes a constant 
escape motor thrust during the burn, the acceleration can exceed 15 g’s as the weight of the vehicle is reduced due 
to the loss of propellant.  Also, the assumption that the thrust instantaneously drops to zero following the burn is 
overly conservative when analyzing crew g-loads.  In reality, the escape motor thrust curve will be designed with 
consideration for g-loads and the thrust will tail-off as the burn nears completion, which will result in a more benign 
shift from positive to negative g-loads following LAS burnout.   

Positive and negative g-loads for all three vehicle seat axes (eyeballs-in/out, left/right, and down/up) are 
compared against Human System Integration Requirement (HSIR) limits.  Also, roll rates and pitch rates for each 
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case are analyzed and compared with the HSIR constraints.  LAS aborts are examined every 10 seconds from 0 
seconds to 150 seconds Mission Elapsed Time (MET).  LAS abort capability ends with nominal LAS jettison, which 
is assumed to occur at 150 seconds MET. 

When analyzing the acceleration during the LAS abort, two different acceleration peaks are observed.  The first 
peak is due to the LAS escape motor thrust.  These accelerations are very high and very brief.  The second 
acceleration peak has a longer duration but does not reach as high a magnitude.  These accelerations are caused by 
the atmospheric reentry of the later aborts that reach a velocity high enough to drive up the loads.  The LAS escape 
motor induces vehicle accelerations resulting in over 18 g’s eyeballs-in.  The later LAS aborts exhibit slightly higher 
g-loads due to reduced atmospheric drag effects.  However, there are also earlier abort scenarios executed at the 
higher density, lower altitudes that exhibit a large eyeballs-in g-load immediately followed by a large eyeballs-out 
load after escape motor burnout.  This is most pronounced for abort times near the point of maximum drag. 

Figure 4 shows a data reduction of the peak g-loads across the LAS abort window.  The duration of each g-load 
is designated in color per the color range key on the right side of the figure.  As the illustration shows, the early 
peaks caused by the LAS escape motor last for a very brief period of time, less than 1 second.  A second set of 
maximums are shown for aborts at 100 seconds through 149 seconds MET.  Again, these represent the smaller, 
secondary peaks that are caused by atmospheric reentry of the later LAS aborts.  These g-load peaks are 
approximately 10 to 12 g’s and last for 8 to 12 seconds in duration. 
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Figure 4: Maximum X-axis G-loads for Various Abort Times 

 
Also, the plot shows that the maximum total acceleration dips down around 50 seconds MET.  This low point 

on the curve corresponds to the approximate point of maximum dynamic pressure during ascent, thereby reducing 
the overall acceleration.  This time region, however, is also characterized by a relatively large swing from positive to 
negative g-loads.  For an abort at 30 seconds MET, the crew experience approximately 15 g’s eyeballs-in, followed 
by about 10 g’s eyeballs-out over a period of several seconds.  Again, this extreme g-load shift is overly estimated in 
this analysis due to the conservative assumptions regarding thrust shaping.  However, even with this conservatism, 
the crew g-loads still remain within HSIR limits.  In fact, all LAS test cases are shown to meet the HSIR limits.  
Finally, the roll and pitch rates are analyzed for all LAS aborts and are within HSIR limits as well. 

UAS SPLASHDOWN LOCATION ANALYSIS 
This analysis estimates the latest time at which a CLV upper stage engine shutdown (and ensuing UAS abort) 

can occur and still result in a CM splashdown no further east than a 150 nm radius about St. John’s, Newfoundland.  
The 150 nm range is a limit imposed to allow a timely recovery of the crew with assets based at St. John’s before 

 8  



the cold North Atlantic waters pose a survivability risk.  Outside this radius, toward the mid-Atlantic has been 
termed the Downrange Ascent Exclusion Zone (DAEZ). 

The engine failure time is varied from 480 to 550 seconds, at five second intervals.  The geodetic latitude and 
longitudes from the completed ARES simulations were plotted using Google Earth™ (see Figure 4-20).  In order to 
determine the accuracy of Google Earth™ in visually plotting the coordinates, the initial coordinates (representing 
the launch site) from an ARES data output file were entered, and the location shown and marked corresponded to 
the launch pad hold-down posts within about 70 ft.  The coordinates for St. John’s airport were entered and the 
location shown and marked corresponded to the center of the airfield.  Distances from the airport to a splashdown 
point were determined using a measurement tool within the Google Earth™ application.  A cross check was done 
for the measurement tool, comparing the distance calculated by Google Earth™ with the distance calculated by a 
great circle calculator.  The two distances measured were within 1 nmi of each other. 

The results are plotted in Figure 5. Utilizing lift-up entry guidance, an engine shutdown at about 526 seconds 
results in a splashdown 150 nmi east of St. John’s.  A set of cases are also run using a ballistic entry mode.  In this 
mode, the capsule rotates slowly, so the lift vector rotates and the net lift is nulled out.  For the ballistic case, an 
engine shutdown at 543 seconds results in splashdown at the 150 nm limit east of St. John’s.  It should be noted here 
that further analysis with higher fidelity atmosphere, winds, and propulsion models may significantly change the 
results. 

 
 

Figure 5: UAS Splashdown Locations 

UAS CREW G-LOAD ANALYSIS 
In addition to the g-load assessment for LAS aborts, this analysis also assessed crew loads and vehicle rates 

during UAS aborts.  Positive and negative g-loads for all three seat axes (eyeballs in/out, left/right, and down/up) 
were compared against HSIR limits, as well as the vehicle roll rates and pitch rates.  UAS aborts were simulated 
assuming both lift-up CM reentry and no-lift CM reentry.  LAS abort capability ends with nominal LAS jettison at 
150 seconds MET.  TAL and ATO abort capability picks up around 550 seconds MET.  Thus, these times were used 
to bound the UAS abort test matrix.  Originally, aborts every 50 seconds between 150 seconds and 550 seconds 
were included in the test matrix.  However, more cases were added to look deeper at the abort times characterized 
by high g-loads. 

With a CM lift-up reentry attitude, the results show that the eyeballs-in g-loads peak at about 10 g’s at 10 
seconds duration for aborts around 350 seconds MET due to steep atmospheric reentry.  For UAS aborts with a 
ballistic reentry attitude, the eyeballs-in g-loads peak at around 17 g’s at 8 seconds duration for aborts around 450 
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seconds MET, again due to steep atmospheric reentry.  The results clearly show that the crew g-loads can be reduced 
by employing a guidance scheme that controls lift, as in the lift-up reentry scenario.  For both the lift-up and 
ballistic cases, the Y and Z axes g-loads remain well below HSIR limits, as do the roll and pitch rates for these 
scenarios. 

ATO DROOP ALTITUDE ANALYSIS 
The ATO boundary is defined as the earliest CLV upper stage engine failure or abort time where the vehicle can 

still achieve a safe, sustainable orbit with the SM engine while maintaining an altitude above the minimum droop 
altitude.  For this analysis, the Powered Explicit Guidance (PEG) Linear Terminal Velocity Constraint (LTVC) 
algorithm, also known as PEG-4, was utilized to perform all SM burns.  Although this type of burn is near optimal 
for propellant usage, it is not necessarily optimal for maximizing the droop altitude and therefore will likely result in 
an overly conservative (i.e. late) ATO boundary.  To determine the abort mode boundary, a range of engine-out (EO) 
times was simulated at one second intervals from 540 seconds until MECO.  The assumptions used for the ATO 
abort mode analysis are as follows: 

1) the minimum droop altitude for ATO aborts is 335 kft, 
2) the minimum safe orbit for ATO aborts is 100x100 nm, 
3) the SM engine thrust-to-weight (T/W) ratio is approximately 0.2, 
4) the maximum ΔV capability of the SM engine is 4700 fps, with 340 fps of that total ΔV reserved for 

the deorbit burn, 
5) a full SM propellant load of 20,500 lbm is baselined, and 
6) a 20 second delay time is required in between ATO abort initiation (i.e. separation from the CLV) and 

SM engine ignition. 
A sensitivity analysis was later performed for most of these assumptions to show the variation in the ATO boundary.  
Since a full SM propellant load is assumed, ATO capability is not constrained by SM ΔV capability, rather it is 
limited by the minimum droop altitude to protect for SM thermal conditions.  Based on a preliminary thermal 
analysis performed by the NASA Johnson Space Center Aeroscience and Flight Mechanics Division, the minimum 
droop altitude is estimated to be 335,000 ft. 

Using PEG-4 guidance, the first of two SM 
burns is simulated in ARES to determine the 
droop altitude that is reached for various EO 
times.  For the baseline configuration (i.e., 
employing the configuration and assumptions 
listed above), the earliest EO time that does not 
violate the droop constraint is 553 seconds.  At 
this EO time, the point along the trajectory 
where the droop altitude reaches its minimum is 
about 250 seconds after abort initiation and 
occurs prior to SM burn completion.  Figure 6 
shows the altitude profile for EO times ranging 
from 551–555 seconds (i.e., 2 seconds before 
and after the droop constrained ATO boundary). 

For an engine failure at 551 seconds, the 
droop altitude is approximately 317,000 ft.  
Therefore, even if the droop altitude constraint 
of 335,000 feet is too conservative and the 
actual constraint is 20,000 feet lower, ATO 
capability will only improve by approximately 

two seconds.  Further sensitivity analyses were done for the assumptions regarding T/W ratio, SM ignition delay 
time, and final orbital altitude.  As shown in Figure 7a, the droop altitude and corresponding ATO boundary are 
improved by about one second by decreasing the SM main engine ignition delay time to ten seconds.  Similarly, 
Figure 7b shows that  ATO capability can be achieved about three seconds earlier by using a 0.3 T/W ratio.  The 
final orbital altitude had very little effect on the droop altitude and actually delayed the first ATO capability by a 
fraction of a second. 
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Figure 6: Altitude Profile for EO times from 551–555 sec
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Figure 7: Droop Altitude v. EO Time

 

ELEMENT DISPOSAL ANALYSIS 
This analysis was conducted to determine how many seconds of abort initiation for UAS, TAL, and ATO aborts 

result in CLV upper stage disposal over Eurasia for 51.6 degree inclination trajectories.  Another way to look at this 
is to determine what underspeeds result in upper stage disposal over Eurasia.  There are a number of off-nominal 
situations that result in an upper stage disposal issue for CLV.  First, if an upper stage engine failure occurs, there is 
a chance the upper stage will fall short of the nominal disposal zone in the Indian Ocean and possibly impact 
Eurasia.  Also, if the J-2X engine exhibits off-nominal performance producing a large enough underspeed or if there 
is a reason to manually shutdown the J-2X prematurely, this disposal problem can occur.  Finally, significant 
underspeeds can result from an off-nominal flight day where systems and trajectory dispersions degrade 
performance and the loaded flight propellant reserve (FPR) is not enough to protect for these dispersions.  This 
study attempts to encompass all of these malfunctions by identifying both the J-2X engine failure times and the 
underspeeds that result in upper stage impact on Eurasia. 

The results show that an upper stage footprint for an abort initiated at 566 seconds begins to impact 
northwestern Eurasia.  Over the next seven seconds, aborts result in upper stage disposal on Eurasia before the 
footprint shifts into the Indian Ocean as intended for nominal disposal.  Figure 8 illustrates the entire range of 
(intact) upper stage impact points and the corresponding underspeed.  A debris footprint will encompass each impact 
point due to the upper atmospheric breakup of the upper stage.  Debris footprints for each of the disposal trajectories 
were also assessed, and these results can be found in Reference 2. MECO underspeeds between approximately 150 
fps and 850 fps result in Eurasia impact.  These results have been presented to the Constellation Launch Range 
Safety Panel and are not expected to be an issue that should affect CLV/CEV design. 
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Figure 8: Intact Upper Stage Impact Points for Various Abort Times 

ABORT BOUNDARY ESTIMATES 
Based on the assumptions listed earlier and the simulation capabilities at the time, preliminary estimates of the 

abort mode boundaries were obtained.  These initial boundary estimates, which indicate where a given abort mode 
capability is first achieved and when it is no longer viable, are co-plotted with the nominal trajectory altitude profile 
in Figure 9. 
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Figure 9: Preliminary Abort Boundaries Based on 6-DOF Analysis 

 
Figure 9 indicates that there is a 10 second gap between the last UAS boundary at 543 seconds and first TAL / 

ATO capability at 553 seconds.  This gap, however, is not expected to be an issue once more sophisticated 
techniques are employed.  The 6-DOF ATO analysis completed to date only analyzed the droop altitudes for SM 
burn sequences that utilize the PEG-4 guidance algorithm.  While PEG-4 likely results in a burn that minimizes 
delta-V and propellant usage, it is unlikely that this burn sequence optimizes the droop altitude, which has more of 
an impact on the ATO boundary.  The addition of a droop control guidance algorithm is expected to close the entire 
10-second gap between UAS and TAL / ATO.  The droop control techniques will involve increasing the burn 
attitude so that the SM engine is firing at some high LVLH pitch attitude to raise the droop altitude.  The vehicle 
may only need to fire the SM engine at the higher pitch attitude for a short period of time before it can then shift to 
the PEG-4 guidance mode or use some other targeting scheme to begin raising perigee once the droop altitude is no 
longer a concern.  This assumes, however, that SM thermal concerns can be completely mitigated by maintaining an 
altitude above 335 kft.  Some argue that the higher pitch attitude associated with droop control logic may present 
thermal concerns as well.  Other possible methods for closing the gap between UAS and TAL / ATO include CM 
entry lift control for late UAS aborts, a SM retrograde burn for early TAL aborts, or an offload of SM propellant for 
all ISS missions.  Each of these options has its potential benefits and concerns and will need to be fully analyzed 
before conclusive statements can be made. 

CONCLUSION AND FUTURE WORK 
Based on the results of the 3-DOF and 6-DOF analysis of CEV ascent abort coverage for ISS missions, it is 

anticipated that the CEV design will be able to successfully meet all of the current requirements described in Section 
3.0.  Furthermore, it does not appear that any changes to the requirements need to be made based on the current data 
available.  Overall, the 6-DOF analysis results have compared relatively well with that of the 3-DOF simulations.  
Although the 6-DOF analysis completed to date has shown a ten second gap may exist between Mode II and Mode 
III/IV aborts due to the DAEZ for the ISS mission, the elimination of the gap is not expected to be an issue once the 
techniques outlined earlier have been implemented.  Each of these will be explored to understand the associated 
benefits to be gained in later UAS aborts and earlier TAL/ATO aborts. 

Additionally, further analysis does need to be performed for all abort modes to ensure that the vehicle’s 
capability is being accurately reflected and that the vehicle is protected for realistic failures or dispersions that may 
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be present during the actual mission.  The LAS escape motor thrust curve should be more accurately modeled with 
an expected profile and the crew g-loads reassessed.  Due to the limitations of the ARES simulation, very limited 
Mode III analysis has been completed to date.  Therefore, once the ARES Mode III simulation capabilities are 
expanded, detailed analysis of this abort mode will need to be performed.  
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