3,344 research outputs found
Variant Monte Carlo algorithm for driven elastic strings in random media
We discuss the non-local Variant Monte Carlo algorithm which has been
successfully employed in the study of driven elastic strings in disordered
media at the depinning threshold. Here we prove two theorems, which establish
that the algorithm satisfies the crucial no-passing rule and that, after some
initial time, the string exclusively moves forward. The Variant Monte Carlo
algorithm overcomes the shortcomings of local methods, as we show by analyzing
the depinning threshold of a single-pin problem.Comment: 6 pages, 2 figures, proceedings of Conference on Computational
Physics, CCP2004 (Genova, Italy
Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway
Melanocortin-1 receptor (MC1R) and its ligands, a-melanocyte stimulating hormone (aMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we
investigated biological effects and signaling pathways of ASIP. Melan-a non agouti (a ⁄ a) mouse melanocytes produce
mainly eumelanin, but ASIP combined with phenylthiourea and extra cysteine could induce over 200-fold increases in the pheomelanin to eumelanin ratio, and a tan-yellow color in pelletted cells.Moreover, ASIP-treated cells showed reduced proliferation and a melanoblast-like appearance, seen also in melanocyte lines from yellow (Ay ⁄ a and Mc1re ⁄ Mc1re) mice. However ASIP-YY, a C-terminal fragment of ASIP, induced neither biological nor pigmentary changes. As, like ASIP, ASIP-YY inhibited the cAMP rise induced by aMSH analog NDP-MSH, and reduced cAMP level without added MSH, the morphological changes and depigmentation seemed independent of cAMP signaling. Melanocytes genetically null for ASIP mediators attractin or mahogunin (Atrnmg-3J ⁄ mg-3J or Mgrn1md-nc ⁄ md-nc) also responded to both ASIP and ASIP-YY in cAMP level, while only ASIP altered their proliferation and (in part) shape. Thus, ASIP–MC1R signaling includes a cAMP-independent pathway through attractin
and mahogunin, while the known cAMP-dependent component requires neither attractin nor mahogunin.Parts of the research were supported by Wellcome Trust program grants 064583 and 078327 to D.C.B. and E.V.S.; the Japan Society for the Promotion of Science KAKENHI (grants 20790808 to T.H. and 18591262 and 20591357 to K.W. and S.I.); a Grant-in-Aid from the Japanese Ministry of Health, Labour and Welfare (K.J.), the Spanish Ministry of Education and Science BFU2006-12185 (L.M.), the South West Academic Network (A.J.D. and E.V.S.), and NIH grant DK064265 (B.Y. and G.L.M.).Peer reviewe
Hsp90 governs dispersion and drug resistance of fungal biofilms
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections
Width distribution of contact lines on a disordered substrate
We have studied the roughness of a contact line of a liquid meniscus on a
disordered substrate by measuring its width distribution. The comparison
between the measured width distribution and the width distribution calculated
in previous works, extended here to the case of open boundary conditions,
confirms that the Joanny-de Gennes model is not sufficient to describe the
dynamics of contact lines at the depinning threshold. This conclusion is in
agreement with recent measurements which determine the roughness exponent by
extrapolation to large system sizes.Comment: 4 pages, 3 figure
Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking
Rationale
GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.
Objective
We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.
Methods
α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).
Results
No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.
Conclusions
Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking
Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta
On Instanton Effects in F-theory
We revisit the issue of M5-brane instanton corrections to the superpotential
in F-theory compactifications on elliptically fibered Calabi-Yau fourfolds.
Elaborating on concrete geometries, we compare the instanton zero modes for
non-perturbative F-theory models with the zero modes in their perturbative Sen
limit. The fermionic matter zero modes localized on the intersection of the
instanton with the space-time filling D7-branes show up in a geometric way in
F-theory. Methods for their computation are developed and, not surprisingly,
exceptional gauge group structures do appear. Finally, quite intriguing
geometrical aspects of the one-loop determinant are discussed.Comment: 52 pages, 8 figures, 13 tables; v2: extended discussion of matter
zero modes, refs added; v3: sections 3.3 + 4.1 restructure
The role of childhood social position in adult type 2 diabetes: Evidence from the English Longitudinal Study of Ageing
Copyright @ 2014 Pikhartova et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background: Socioeconomic circumstances in childhood and early adulthood may influence the later onset of chronic disease, although such research is limited for type 2 diabetes and its risk factors at the different stages of life. The main aim of the present study is to examine the role of childhood social position and later inflammatory markers and health behaviours in developing type 2 diabetes at older ages using a pathway analytic approach. Methods. Data on childhood and adult life circumstances of 2,994 men and 4,021 women from English Longitudinal Study of Ageing (ELSA) were used to evaluate their association with diabetes at age 50 years and more. The cases of diabetes were based on having increased blood levels of glycated haemoglobin and/or self-reported medication for diabetes and/or being diagnosed with type 2 diabetes. Father's job when ELSA participants were aged 14 years was used as the measure of childhood social position. Current social characteristics, health behaviours and inflammatory biomarkers were used as potential mediators in the statistical analysis to assess direct and indirect effects of childhood circumstances on diabetes in later life. Results: 12.6 per cent of participants were classified as having diabetes. A disadvantaged social position in childhood, as measured by father's manual occupation, was associated at conventional levels of statistical significance with an increased risk of type 2 diabetes in adulthood, both directly and indirectly through inflammation, adulthood social position and a risk score constructed from adult health behaviours including tobacco smoking and limited physical activity. The direct effect of childhood social position was reduced by mediation analysis (standardised coefficient decreased from 0.089 to 0.043) but remained statistically significant (p = 0.035). All three indirect pathways made a statistically significantly contribution to the overall effect of childhood social position on adulthood type 2 diabetes. Conclusions: Childhood social position influences adult diabetes directly and indirectly through inflammatory markers, adulthood social position and adult health behaviours. © 2014Pikhartova et al.; licensee BioMed Central Ltd.Economic and Social Research Council-funded International Centre for Life Course Studies in Society and Health (RES-596-28-0001)
Reorganisation of cortical oscillatory dynamics underlying disinhibition in frontotemporal dementia
The distribution of pathology in frontotemporal dementia is anatomically selective, to distinct cortical regions and with differential neurodegeneration across the cortical layers. The cytoarchitecture and connectivity of cortical laminae preferentially supports frequency-specific oscillations and hierarchical information transfer between brain regions. We therefore predicted that in frontotemporal dementia, core functional deficits such as disinhibition would be associated with differences in the frequency spectrum and altered cross-frequency coupling between frontal cortical regions. We examined this hypothesis using a “Go-NoGo” response inhibition paradigm with eighteen patients with behavioural variant frontotemporal dementia and 20 healthy aged-matched during magnetoencephalography. During Go and NoGo trials, beta desynchronisation was severely attenuated in patients. Beta power was associated with increased impulsivity, as measured by the Cambridge Behavioural Inventory, a carer based questionnaire of changes in everyday behaviour. To quantify the changes in cross-frequency coupling in the frontal lobe, we used Dynamic Causal Modeling to test a family of hierarchical casual models, which included the inferior frontal gyrus, pre-supplementary motor area (preSMA) and primary motor cortex. This analysis revealed evidence for cross-frequency coupling in a fully connected network in both groups. However, in the patient group, we identified a significant loss of reciprocal connectivity of the inferior frontal gyrus, particularly for interactions in the gamma band and for theta to alpha coupling. Importantly, although prefrontal coupling was diminished, gamma connectivity between preSMA and motor cortex was enhanced in patients. We propose that the disruption of behavioural control arises from reduced frequency-specific connectivity of the prefrontal cortex, together with a hyper-synchronous reorganisation of connectivity among preSMA and motor regions. These results are supported by preclinical evidence of the selectivity of frontotemporal lobar degeneration on oscillatory dynamics, and provide a clinically relevant yet precise neurophysiological signature of behavioural control as a potential pharmacological target for early phase experimental medicines studies.This work was primarily funded by the Wellcome Trust (103838) with additional support from the Medical Research Council (MC-A060-5PQ30, and RG62761) and the NIHR Cambridge Biomedical Research Centre and Cambridge Brain Bank. The BCNI is supported by a joint award from the Wellcome Trust and Medical Research Council
- …
