116 research outputs found

    Analysis of D- and L- Isomers of (Meth)amphetamine in Human K2EDTA Plasma

    Get PDF
    Methamphetamine and its metabolite amphetamine are frequently abused drugs. Whether obtained legally or from clandestine laboratories it is of relevance to determine the chiral makeup of these drugs for investigative purpose. Although urine and oral fluid matrices are commonly offered, less available to independent laboratories are techniques to verify dextro (D-) or levo (L-) (meth)amphetamine from human K2EDTA plasma. This paper outlines the development and validation of a method that includes the addition of internal standard and a two-step liquid-liquid extraction to remove the analytes from human K2EDTA plasma by triple quadrupole mass spectrometry (LC-MS/MS). The assay was validated according to the United States Food and Drug Administration and College of American Pathologists guidelines, including assessment of the following parameters in plasma validation samples: linear range, limit of detection, lower limit of quantitation, matrix effects, inter- and intra-day assay precision and accuracy, carry over, linearity of dilution, matrix effects and stability. The outcome is a validated and reliable method for the determination of D- and L- isomer concentration of meth(amphetamine) human plasma samples that can be easily adopted by independent clinical laboratories

    A Human Oral Fluid Assay for D- and L- Isomer Detection of Amphetamine and Methamphetamine Using Liquid-Liquid Extraction

    Get PDF
    Medical providers are increasingly confronted with clinical decision-making that involves (meth)amphetamines. And clinical laboratories need a sensitive, efficient assay for routine assessment of D- and L-isomers to determine the probable source of these potentially illicit analytes. This paper presents a validated method of D- and L-isomer detection in human oral fluid from an extract used for determination of a large oral fluid assay (63 analytes) on an older AB SCIEX 4000 instrument. Taken from the positive extract, D- and L-analytes were added. The method for extraction included addition of internal standard and a 2-step liquid-liquid extraction and dry-down step to concentrate and clean the samples. The samples were suspended in 50% MeOH in water, diluted with mobile phase, with separation and detection accomplished using LC-MS/MS to determine analyte concentration. Once samples were confirmed positive for (meth)amphetamine from the large oral fluid assay, they were further examined for the enantiomeric forms with 50 μl aliquots of the standards and samples of interest combined with 450 μl of D- and L-assay mobile phase, then analyzed using chiral column separation, and LC-MS/MS detection with standard curve spanning the range from 2.5 to 1000 ng/mL. The result is a sensitive and accurate detection of D- and L-isomers of amphetamine and methamphetamine in human oral fluid performed on an older model mass spectrometer (AB SCIEX 4000). The novelty of this assay is twofold (a) the 2-step liquid-liquid extraction and dry-down step to concentrate and clean the samples, and (b) its adoption characteristics as a reflex test from a large ODT panel without the need to invest in newer or expensive LC-MS/MS instruments. Finally, this assay also has potential to add a valuable option to high-throughput laboratories seeking a D- and L-testing alternative to urine drug testing methods

    Quantifying 64 drugs, illicit substances, and D- and L- isomers in human oral fluid with liquid-liquid extraction

    Get PDF
    Although human oral fluid has become more routine for quantitative drug detection in pain management, detecting a large scope of medications and substances is costly and technically challenging for laboratories. This paper presents a quantitative assay for 64 pain medications, illicit substances, and drug metabolites in human oral fluid. The novelty of this assay is that it was developed on an older model AB SCIEX 4000 instrument and renders obscure the need for more technical and expensive laboratory equipment. This method includes addition of internal standard and a 2-step liquid-liquid extraction and dry-down step to concentrate and clean the samples. The samples were suspended in 50% MeOH in water and separation and detection was accomplished using triple quadrupole mass spectrometry (LC-MS/MS). Separation was achieved using reverse-phase liquid chromatography with detection by LC-MS/MS. A second injection was done in negative mode to determine THC-COOH concentration as an indicator of THC. An aliquot of the (already) extracted samples was analyzed for D- and L- isomers of amphetamine and methamphetamine using a chiral column. The standard curve spanned from 5 to 2000 ng/mL for most of the analytes (1 to 2000 ng/mL for fentanyl and THC-COOH) and up to 1000 ng/mL for 13 analytes. Pregabalin and gabapentin ranged from 25 to 2000 ng/mL. The result is a low-cost method for the sensitive detection of a wide-ranging oral fluid menu for pain management. This assay has a high sensitivity, and good precision and accuracy for all analytes with an older model mass spectrometer

    Graduate views on access to higher education: is it really a case of pulling up the ladder?

    Get PDF
    Using as a starting point in the recent work of Mountford-Zimdars et al., the authors analyse attitudes towards expanding higher education (HE) opportunities in the UK. The authors propose that the approach of Mountford-Zimdars et al. is flawed not only in its adoption of a multivariate logistic regression but also in its interpretation of results. The authors make a number of adaptations, chief among them being the use of an ordered probit approach and the addition of a time dimension to test for changes in attitudes between 2000 and 2010. The authors find that attitudes towards HE expansion have intensified during the decade 2000–2010, but the authors uncover no evidence that this is due to graduates wanting to ‘pull up the ladder’, as suggested by Mountford-Zimdars et al. The authors argue that evidence of a widespread desire to reduce access to HE can most likely be explained by social congestion theory, internal institutional disaffection and rising tuition fees

    A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment.

    Get PDF
    Through the combined use of (18)F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scanned and tested on a computerized sustained attention task after oral methylphenidate (0.5 mg/kg) and placebo administration in a within-subject, double-blind, cross-over design. Although patients with attention deficit/hyperactivity disorder as a group showed significant attentional deficits and reduced grey matter volume in fronto-striato-cerebellar and limbic networks, they had equivalent D2/D3 receptor availability and equivalent increases in endogenous dopamine after methylphenidate treatment to that observed in healthy control subjects. However, poor attentional performers drawn from both the attention deficit/hyperactivity disorder and the control groups had significantly reduced left caudate dopamine activity. Methylphenidate significantly increased dopamine levels in all nigro-striatal regions, thereby normalizing dopamine levels in the left caudate in low performers. Behaviourally, methylphenidate improved sustained attention in a baseline performance-dependent manner, irrespective of diagnosis. This finding was accompanied by an equally performance-dependent effect of the drug on dopamine release in the midbrain, whereby low performers showed reduced dopamine release in this region. Collectively, these findings support a dimensional model of attentional deficits and underlying nigro-striatal dopaminergic mechanisms of attention deficit/hyperactivity disorder that extends into the healthy population. Moreover, they confer midbrain dopamine autoreceptors a hitherto neglected role in the therapeutic effects of oral methylphenidate in attention deficit/hyperactivity disorder. The absence of significant case-control differences in D2/D3 receptor availability (despite the observed relationships between dopamine activity and attention) suggests that dopamine dysregulation per se is unlikely to be the primary cause underlying attention deficit/hyperactivity disorder pathology in adults. This conclusion is reinforced by evidence of neuroanatomical changes in the same set of patients with attention deficit/hyperactivity disorder

    Genomic Standards Consortium projects

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 599-601, doi:10.4056/sigs.5559680.The Genomic Standards Consortium (GSC) is an open-membership community working towards the development, implementation and harmonization of standards in the field of genomics. The mission of the GSC is to improve digital descriptions of genomes, metagenomes and gene marker sequences. The GSC started in late 2005 with the defined task of establishing what is now termed the “Minimum Information about any Sequence” (MIxS) standard [1,2]. As an outgrowth of the activities surrounding the creation and implementation of the MixS standard there are now 18 projects within the GSC [3]. These efforts cover an ever widening range of standardization activities. Given the growth of projects and to promote transparency, participation and adoption the GSC has developed a “GSC Project Description Template”. A complete set of GSC Project Descriptions and the template are available on the GSC website. The GSC has an open policy of participation and continues to welcome new efforts. Any projects that facilitate the standard descriptions and exchange of data are potential candidates for inclusion under the GSC umbrella. Areas that expand the scope of the GSC are encouraged. Through these collective activities we hope to help foster the growth of the ‘bioinformatics standards’ community. For more information on the GSC and its range of projects, please see http://gensc.org/
    corecore