32 research outputs found

    Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting

    Get PDF
    Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such largescale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1

    Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1

    Get PDF
    Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV‐1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion‐stabilized HIV‐1 envelope (Env) trimer, BG505 DS‐SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4‐binding site (CD4bs) of vulnerability. Two of the vaccine‐elicited CD4bs‐targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a‐hinge region and human IgG1‐constant region (G36×3‐IgG2a and R27×3‐IgG2a), neutralized 96% of a multiclade 208‐strain panel at geometric mean IC80s of 0.314 and 0.033 ”g mL−1, respectively. Cryo‐EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV‐1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2‐apex‐targeting broadly neutralizing antibody, CAP256V2LS. The resultant human‐llama bispecific antibody CAP256L‐R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV‐1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn‐Fc mice similar to the parent CAP256V2LS. Vaccine‐elicited llama nanobodies, when combined with V2‐apex broadly neutralizing antibodies, may therefore be able to fulfill anti‐HIV‐1 therapeutic and prophylactic clinical goals

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∌1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.

    Get PDF
    CAPRISA, 2014.Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development
    corecore