120 research outputs found

    Orbital Decay of Supermassive Black Hole Binaries in Clumpy Multiphase Merger Remnants

    Full text link
    We simulate an equal-mass merger of two Milky Way-size galaxy discs with moderate gas fractions at parsec-scale resolution including a new model for radiative cooling and heating in a multi-phase medium, as well as star formation and feedback from supernovae. The two discs initially have a 2.6×106 M2.6\times10^6\mathrm{~M_{\odot}} supermassive black hole (SMBH) embedded in their centers. As the merger completes and the two galactic cores merge, the SMBHs form a a pair with a separation of a few hundred pc that gradually decays. Due to the stochastic nature of the system immediately following the merger, the orbital plane of the binary is significantly perturbed. Furthermore, owing to the strong starburst the gas from the central region is completely evacuated, requiring 10\sim10~Myr for a nuclear disc to rebuild. Most importantly, the clumpy nature of the interstellar medium has a major impact on the the dynamical evolution of the SMBH pair, which undergo gravitational encounters with massive gas clouds and stochastic torquing by both clouds and spiral modes in the disk. These effects combine to greatly delay the decay of the two SMBHs to separations of a few parsecs by nearly two orders of magnitude, 108\sim 10^8 yr, compared to previous work. In mergers of more gas-rich, clumpier galaxies at high redshift stochastic torques will be even more pronounced and potentially lead to stronger modulation of the orbital decay. This suggests that SMBH pairs at separations of several tens of parsecs should be relatively common at any redshift.Comment: submitted to MNRAS; Comments very welcom

    YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    Get PDF
    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look

    The impact of COVID-19 on the cancer care of adolescents and young adults and their well-being:Results from an online survey conducted in the early stages of the pandemic

    Get PDF
    Background: Because of the global spread of coronavirus disease 2019 (COVID-19), oncology departments across the world have rapidly adapted their cancer care protocols to balance the risk of delaying cancer treatments and the risk of COVID-19 exposure. COVID-19 and associated changes may have an impact on the psychosocial functioning of patients with cancer and survivors. This study was designed to determine the impact of the COVID-19 pandemic on young people living with and beyond cancer. Methods: In this cross-sectional study, 177 individuals, aged 18 to 39 years, were surveyed about the impact of COVID-19 on their cancer care and psychological well-being. Participants also reported their information needs with respect to COVID-19. Responses were summarized with a content analysis approach. Results: This was the first study to examine the psychological functioning of young patients and survivors during the first weeks of the COVID-19 pandemic. A third of the respondents reported increased levels of psychological distress, and as many as 60% reported feeling more anxious than they did before COVID-19. More than half also wanted more information tailored to them as young patients with cancer. Conclusions: The COVID-19 pandemic is rapidly evolving and changing the landscape of cancer care. Young people living with cancer are a unique population and might be more vulnerable during this time in comparison with their healthy peers. There is a need to screen for psychological distress and attend to young people whose cancer care has been delayed. As the lockdown begins to ease, the guidelines about cancer care should be updated according to this population's needs.</p

    Outer-Disk Populations in NGC 7793: Evidence for Stellar Radial Migration

    Get PDF
    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280" (~5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars of NGC 7793 extend significantly farther than the underlying HI disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.Comment: 8 pages, 6 figure. Accepted for publication in Ap

    The impact of COVID-19 on the cancer care of adolescents and young adults and their well-being:Results from an online survey conducted in the early stages of the pandemic

    Get PDF
    Background Because of the global spread of coronavirus disease 2019 (COVID‐19), oncology departments across the world have rapidly adapted their cancer care protocols to balance the risk of delaying cancer treatments and the risk of COVID‐19 exposure. COVID‐19 and associated changes may have an impact on the psychosocial functioning of patients with cancer and survivors. This study was designed to determine the impact of the COVID‐19 pandemic on young people living with and beyond cancer. Methods In this cross‐sectional study, 177 individuals, aged 18 to 39 years, were surveyed about the impact of COVID‐19 on their cancer care and psychological well‐being. Participants also reported their information needs with respect to COVID‐19. Responses were summarized with a content analysis approach. Results This was the first study to examine the psychological functioning of young patients and survivors during the first weeks of the COVID‐19 pandemic. A third of the respondents reported increased levels of psychological distress, and as many as 60% reported feeling more anxious than they did before COVID‐19. More than half also wanted more information tailored to them as young patients with cancer. Conclusions The COVID‐19 pandemic is rapidly evolving and changing the landscape of cancer care. Young people living with cancer are a unique population and might be more vulnerable during this time in comparison with their healthy peers. There is a need to screen for psychological distress and attend to young people whose cancer care has been delayed. As the lockdown begins to ease, the guidelines about cancer care should be updated according to this population's needs.</p

    THE IMPRINT of RADIAL MIGRATION on the VERTICAL STRUCTURE of GALAXY DISKS

    Get PDF
    We use numerical simulations to examine the effects of radial migration on the vertical structure of galaxy disks. The simulations follow three exponential disks of different mass but similar circular velocity, radial scalelength, and (constant) scale height. The disks develop different non-axisymmetric patterns, ranging from feeble, long-lived multiple arms to strong, rapidly evolving few-armed spirals. These fluctuations induce radial migration through secular changes in the angular momentum of disk particles, mixing the disk radially and blurring pre-existing gradients. Migration primarily affects stars with small vertical excursions, regardless of spiral pattern. This "provenance bias" largely determines the vertical structure of migrating stars: inward migrators thin down as they move in, whereas outward migrators do not thicken up but rather preserve the disk scale height at their destination. Migrators of equal birth radius thus develop a strong scale-height gradient, not by flaring out as commonly assumed, but by thinning down as they spread inward. Similar gradients have been observed for low-[α/Fe] mono-abundance populations (MAPs) in the Galaxy, but our results argue against interpreting them as a consequence of radial migration. This is because outward migration does not lead to thickening, implying that the maximum scale height of any population should reflect its value at birth. In contrast, Galactic MAPs have scale heights that increase monotonically outward, reaching values that greatly exceed those at their presumed birth radii. Given the strong vertical bias affecting migration, a proper assessment of the importance of radial migration in the Galaxy should take carefully into account the strong radial dependence of the scale heights of the various stellar populations. © 2016. The American Astronomical Society. All rights reserved

    The Evolution of Central Group Galaxies in Hydrodynamical Simulations

    Full text link
    We trace the evolution of central galaxies in three ~10^13 M_sun galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. The evolution in the group potential leads, at z=0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion resembling either elliptical or S0 galaxies. Their z~2-2.5 main progenitors are massive M* ~ 3-10 x 10^10 M_sun, star forming (20-60 M_sun/yr) galaxies which host substantial reservoirs of cold gas (~5 x 10^9 M_sun) in extended gas disks. Our simulations thus show that star forming galaxies observed at z~2 are likely the main progenitors of central galaxies in galaxy groups at z=0. Their central stellar densities stay approximately constant from z~1.5 down to z=0. Instead, the galaxies grow inside-out, by acquiring a stellar envelope outside the innermost ~2 kpc. Consequently the density within the effective radius decreases by up to two orders of magnitude. Both major and minor mergers contribute to most of the mass accreted outside the effective radius and thus drive the evolution of the half-mass radii. In one of the three simulated groups the short central cooling time leads to a dramatic rejuvenation of the central group galaxy at z<1, affecting its morphology, kinematics and colors. This episode is eventually terminated by a group-group merger. Our simulations demonstrate that, in galaxy groups, the interplay between halo mass assembly, galaxy merging and gas accretion has a substantial influence on the star formation histories and z=0 morphologies of central galaxies.[Abridged]Comment: 28 pages, 23 figures, 9 tables, accepted to APJ (revised to match accepted version

    ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS

    Get PDF
    We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved
    corecore