200 research outputs found

    The role of fatty aldehyde dehydrogenase in epidermal structure and function

    Get PDF
    The epidermal water barrier resides in the stratum corneum (SC) and is dependent on a highly organized network of multi-lamellar membranes comprised of a critical lipid composition. The SC membranes are formed from precursor membranes packaged in cytoplasmic lamellar bodies in the stratum granulosum and delivered to the SC by exocytosis. An abnormal lipid composition of the SC membranes often results in a disrupted water barrier and the clinical appearance of ichthyosis. This cutaneous feature is characteristic of Sjögren-Larsson syndrome (SLS), an inborn error of lipid metabolism caused by deficiency of fatty aldehyde dehydrogenase (FALDH). The contribution of FALDH to normal epidermal function has become increasingly evident with the recognition that this enzyme has an essential role in metabolism of several lipids, including fatty aldehydes and alcohols, ether glycerolipids, isoprenoid alcohols and certain lipids that undergo ω-oxidation, such as leukotriene B4 and very long-chain fatty acids. In the absence of FALDH, the skin produces lamellar bodies that are empty, lack their surrounding vesicle membranes or contain granular contents rather then the usual cargo membranes. These defective organelles also have impaired exocytosis, which results in structurally abnormal, deficient multi-lamellar membranes in the SC and a leaky water barrier. Although the exact biochemical mechanism for the cutaneous pathology is still unclear, studies in SLS demonstrate the critical importance of FALDH for normal epidermal structure and function

    Novel ALDH3A2 mutations in structural and functional domains of FALDH causing diverse clinical phenotypes in Sjögren-Larsson Syndrome patients

    Get PDF
    Mutations in ALDH3A2 cause Sjögren-Larsson Syndrome (SLS), a neuro-ichthyotic condition that is caused by deficiency of fatty aldehyde dehydrogenase (FALDH). We screened for novel mutations causing SLS among Indian ethnicity, characterized the identified mutations in silico and in vitro; and retrospectively evaluated their role in phenotypic heterogeneity. Interestingly, asymmetric distribution of non-classical traits was observed in our cases. Nerve conduction studies suggested intrinsic-minus-claw hands in two siblings, a novel neurological phenotype to SLS. Genetic testing revealed 5 novel homozygous ALDH3A2 mutations in six cases: Case-1-NM_000382.2:c.50C>A, NP_000373.1:p.(Ser17Ter); Case-2-NM_000382.2:c.199G>T, NP_000373.1:p.(Glu67Ter); Case-3-NM_000382.2:c.1208G>A, NP_000373.1:p.(Gly403Asp); Case-4-NM_000382.2:c.1325C>T, NP_000373.1:p.(Pro442Leu); Case-5&6-NM_000382.2:c.1349G>A, NP_000373.1:p.(Trp450Ter). The mutations identified were predicted to be pathogenic and disrupts the functional domains of the FALDH. p.(Pro442Leu) at the C-terminal α-helix, might impair substrate gating process. Mammalian expression studies with exon-9 mutants confirmed the profound reduction in the enzyme activity. Diminished aldehyde oxidizing activity was observed with cases-2&3. Cases-2 & 3 showed epidermal hyperplasia with mild intracellular edema, spongiosis, hypergranulosis, and perivascular-interstitial lymphocytic infiltrate and a leaky eosinophilic epidermis. The presence of keratin-milia like lipid vacuoles implies defective lamellar secretion with p.(Gly403Asp). This study improves our understanding of the clinical and mutational diversity in SLS, which might help to fast-track diagnostic and therapeutic interventions of this debilitating disorder. This article is protected by copyright. All rights reserved

    Physical activity and clustered cardiovascular disease risk factors in young children: a cross-sectional study (the IDEFICS study)

    Get PDF
    <p>Background The relevance of physical activity (PA) for combating cardiovascular disease (CVD) risk in children has been highlighted, but to date there has been no large-scale study analyzing that association in children aged ≤9 years of age. This study sought to evaluate the associations between objectively-measured PA and clustered CVD risk factors in a large sample of European children, and to provide evidence for gender-specific recommendations of PA.</p> <p>Methods Cross-sectional data from a longitudinal study in 16,224 children aged 2 to 9 were collected. Of these, 3,120 (1,016 between 2 to 6 years, 2,104 between 6 to 9 years) had sufficient data for inclusion in the current analyses. Two different age-specific and gender-specific clustered CVD risk scores associated with PA were determined. First, a CVD risk factor (CRF) continuous score was computed using the following variables: systolic blood pressure (SBP), total triglycerides (TG), total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-c) ratio, homeostasis model assessment of insulin resistance (HOMA-IR), and sum of two skinfolds (score CRFs). Secondly, another CVD risk score was obtained for older children containing the score CRFs + the cardiorespiratory fitness variable (termed score CRFs + fit). Data used in the current analysis were derived from the IDEFICS (‘Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS’) study.</p> <p>Results In boys <6 years, the odds ratios (OR) for CVD risk were elevated in the least active quintile of PA (OR: 2.58) compared with the most active quintile as well as the second quintile for vigorous PA (OR: 2.91). Compared with the most active quintile, older children in the first, second and third quintiles had OR for CVD risk score CRFs + fit ranging from OR 2.69 to 5.40 in boys, and from OR 2.85 to 7.05 in girls.</p> <p>Conclusions PA is important to protect against clustering of CVD risk factors in young children, being more consistent in those older than 6 years. Healthcare professionals should recommend around 60 and 85 min/day of moderate-to-vigorous PA, including 20 min/day of vigorous PA.</p&gt

    Hemostasis and ageing

    Get PDF
    On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related Diseases was held in Palermo, Italy. The lecture of D. Mari on Hemostasis and ageing is summarized herein. Physiological ageing is associated with increased plasma levels of many proteins of blood coagulation together with fibrinolysis impairment. This may be of great concern in view of the known association between vascular and thromboembolic diseases and ageing. On the other hand, centenarians are characterized by a state of hypercoagulability and possession of several high-risk alleles and well-known atherothrombotic risk markers but this appears to be compatible with longevity and/or health. Parameters considered risk factors for atherosclerotic vascular diseases in young people may lose their biological significance in advanced age and assume a different role

    Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus

    Get PDF
    Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects

    Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles

    Get PDF
    <div><p>Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in <i>Trypanosoma brucei</i>. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.</p></div

    Influences of Forest Structure, Climate and Species Composition on Tree Mortality across the Eastern US

    Get PDF
    Few studies have quantified regional variation in tree mortality, or explored whether species compositional changes or within-species variation are responsible for regional patterns, despite the fact that mortality has direct effects on the dynamics of woody biomass, species composition, stand structure, wood production and forest response to climate change. Using Bayesian analysis of over 430,000 tree records from a large eastern US forest database we characterised tree mortality as a function of climate, soils, species and size (stem diameter). We found (1) mortality is U-shaped vs. stem diameter for all 21 species examined; (2) mortality is hump-shaped vs. plot basal area for most species; (3) geographical variation in mortality is substantial, and correlated with several environmental factors; and (4) individual species vary substantially from the combined average in the nature and magnitude of their mortality responses to environmental variation. Regional variation in mortality is therefore the product of variation in species composition combined with highly varied mortality-environment correlations within species. The results imply that variation in mortality is a crucial part of variation in the forest carbon cycle, such that including this variation in models of the global carbon cycle could significantly narrow uncertainty in climate change predictions

    Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium tuberculosis aldehyde dehydrogenases

    Get PDF
    We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 Å), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer

    Trade-Off between Toxicity and Signal Detection Orchestrated by Frequency- and Density-Dependent Genes

    Get PDF
    Behaviors in insects are partly highly efficient Bayesian processes that fulfill exploratory tasks ending with the colonization of new ecological niches. The foraging (for) gene in Drosophila encodes a cGMP-dependent protein kinase (PKG). It has been extensively described as a frequency-dependent gene and its transcripts are differentially expressed between individuals, reflecting the population density context. Some for transcripts, when expressed in a population at high density for many generations, concomitantly trigger strong dispersive behavior associated with foraging activity. Moreover, genotype-by-environment interaction (GEI) analysis has highlighted a dormant role of for in energetic metabolism in a food deprivation context. In our current report, we show that alleles of for encoding different cGMP-dependent kinase isoforms influence the oxidation of aldehyde groups of aromatic molecules emitted by plants via Aldh-III and a phosphorylatable adaptor. The enhanced efficiency of oxidation of aldehyde odorants into carboxyl groups by the action of for lessens their action and toxicity, which should facilitate exploration and guidance in a complex odor environment. Our present data provide evidence that optimal foraging performance requires the fast metabolism of volatile compounds emitted by plants to avoid neurosensory saturation and that the frequency-dependent genes that trigger dispersion influence these processes
    corecore