207 research outputs found

    A rapid method for determining arachidonic:eicosapentaenoic acid ratios in whole blood lipids: correlation with erythrocyte membrane ratios and validation in a large Italian population of various ages and pathologies

    Get PDF
    BACKGROUND: Omega-3 and -6 polyunsaturated fatty acids (LCPUFA), are important for good health conditions. They are present in membrane phospholipids.The ratio of total n-6:n-3 LCPUFA and arachidonic acid:eicosapentaenoic acid (AA and EPA), should not exceed 5:1. Increased intake of n-6 and decreased consumption of n-3 has resulted in much higher, ca 10/15:1 ratio in RBC fatty acids with the possible appearance of a pathological "scenario". The determination of RBC phospholipid LCPUFA contents and ratios is the method of choice for assessing fatty acid status but it is labour intensive and time consuming. AIMS OF THE STUDY: [i] To describe and validate a rapid method, suitable for large scale population studies, for total blood fatty acid assay; [ii] to verify a possible correlation between total n-6:n-3 ratio and AA:EPA ratios in RBC phospholipids and in whole-blood total lipids, [iii] to assess usefulness of these ratio as biomarkers of LCPUFA status. METHODS: 1 Healthy volunteers and patients with various pathologies were recruited.2 Fatty acid analyses by GC of methyl esters from directly derivatized whole blood total lipids and from RBC phospholipids were performed on fasting blood samples from 1432 subjects categorised according to their age, sex and any existing pathologies.AA:EPA ratio and the total n-6:n-3 ratio were determined. RESULTS: AA:EPA ratio is a more sensitive and reliable index for determining changes in total blood fatty acid and it is correlated with the ratio derived from extracted RBC phospholipids. CONCLUSIONS: The described AA:EPA ratio is a simple, rapid and reliable method for determining n-3 fatty acid status

    Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PUFAs are important molecules for membrane order and function; they can modify inflammation-inducible cytokines production, eicosanoid production, plasma triacylglycerol synthesis and gene expression. Recent studies suggest that n-3 PUFAs can be cancer chemopreventive, chemosuppressive and auxiliary agents for cancer therapy. N-3 PUFAs could alter cancer growth influencing cell replication, cell cycle, and cell death. The question that remains to be answered is how n-3 PUFAs can affect so many physiological processes. We hypothesize that n-3 PUFAs alter membrane stability, modifying cellular signalling in breast cancer cells.</p> <p>Methods</p> <p>Two lines of human breast cancer cells characterized by different expression of ER and EGFR receptors were treated with AA, EPA or DHA. We have used the MTT viability test and expression of apoptotic markers to evaluate the effect of PUFAs on cancer growth. Phospholipids were analysed by HPLC/GC, to assess n-3 incorporation into the cell membrane.</p> <p>Results</p> <p>We have observed that EPA and DHA induce cell apoptosis, a reduction of cell viability and the expression of Bcl2 and procaspase-8. Moreover, DHA slightly reduces the concentration of EGFR but EPA has no effect. Both EPA and DHA reduce the activation of EGFR.</p> <p>N-3 fatty acids are partially metabolized in both cell lines; AA is integrated without being further metabolized. We have analysed the fatty acid pattern in membrane phospholipids where they are incorporated with different degrees of specificity. N-3 PUFAs influence the n-6 content and vice versa.</p> <p>Conclusions</p> <p>Our results indicate that n-3 PUFA feeding might induce modifications of breast cancer membrane structure that increases the degree of fatty acid unsaturation. This paper underlines the importance of nutritional factors on health maintenance and on disease prevention.</p

    Long-term treatment with deferiprone enhances left ventricular ejection function when compared to deferoxamine in patients with thalassemia major

    Get PDF
    Transfusion and iron chelation treatment have significantly reduced morbidity and improved survival of patients with thalassemia major. However, cardiac disease continues to be the most common cause of death. We report the left-ventricular ejection fraction, determined by echocardiography, in one hundred sixtyeight patients with thalassemia major followed for at least 5 years who received continuous monotherapy with deferoxamine (N = 108) or deferiprone (N = 60). The statistical analysis, using the generalized estimating equations model, indicated that the group treated with deferiprone had a significantly better left-ventricular ejection fraction than did those treated with deferoxamine (coefficient 0.97; 95% CI 0.37; 1.6, p = 0.002). The heart may be particularly sensitive to iron-induced mitochondrial damage because of the large number of mitochondria and its low level of antioxidants. Deferiprone, because of its lower molecular weight, might cross into heart mitochondria more efficiently, improving their activity and, thereby, myocardial cell function. Our findings indicate that the long-term administration of deferiprone significantly enhances left-ventricular function over time in comparison with deferoxamine treatment. However, because of limitations related to the design of this study, these findings should be confirmed in a prospective, randomized clinical trial

    Effects of Long-Term Space Flight on Erythrocytes and Oxidative Stress of Rodents

    Get PDF
    Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as “space anemia”. Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants

    The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients

    Get PDF
    Background: Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. Methods: 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT\ubcT0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4\u20138 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. Results: Plasma levels of TERT were significantly lower at T2 (Po0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73\u20130.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10\u20134.11)-fold and 4.55 (95% CI 1.48\u201313.95)-fold higher, respectively, than those with undetectable plasma TERT levels. Conclusions: Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy

    Effects of Germline VHL Deficiency on Growth, Metabolism, and Mitochondria.

    Get PDF
    Mutations in VHL, which encodes von Hippel-Lindau tumor suppressor (VHL), are associated with divergent diseases. We describe a patient with marked erythrocytosis and prominent mitochondrial alterations associated with a severe germline VHL deficiency due to homozygosity for a novel synonymous mutation (c.222C→A, p.V74V). The condition is characterized by early systemic onset and differs from Chuvash polycythemia (c.598C→T) in that it is associated with a strongly reduced growth rate, persistent hypoglycemia, and limited exercise capacity. We report changes in gene expression that reprogram carbohydrate and lipid metabolism, impair muscle mitochondrial respiratory function, and uncouple oxygen consumption from ATP production. Moreover, we identified unusual intermitochondrial connecting ducts. Our findings add unexpected information on the importance of the VHL-hypoxia-inducible factor (HIF) axis to human phenotypes. (Funded by Associazione Italiana Ricerca sul Cancro and others.)

    Preventing foot ulceration in diabetes:systematic review and meta-analyses of RCT data

    Get PDF
    Aims/hypothesis: Foot ulceration is a serious complication for people with diabetes that results in high levels of morbidity for individuals and significant costs for health and social care systems. Nineteen systematic reviews of preventative interventions have been published, but none provides a reliable numerical summary of treatment effects. The aim of this study was to systematically review the evidence from RCTs and, where possible, conduct meta-analyses to make the best possible use of the currently available data. Methods: We conducted a systematic review and meta-analysis of RCTs of preventative interventions for foot ulceration. OVID MEDLINE and EMBASE were searched to February 2019 and the Cochrane Central Register of Controlled Trials to October 2018. RCTs of interventions to prevent foot ulcers in people with diabetes who were free from foot ulceration at trial entry were included. Two independent reviewers read the full-text articles and extracted data. The quality of trial reporting was assessed using the Cochrane Risk of Bias tool. The primary outcome of foot ulceration was summarised using pooled relative risks in meta-analyses. Results: Twenty-two RCTs of eight interventions were eligible for analysis. One trial of digital silicone devices (RR 0.07 [95% CI 0.01, 0.55]) and meta-analyses of dermal infrared thermometry (RR 0.41 [95% CI 0.19, 0.86]), complex interventions (RR 0.59 [95% CI 0.38, 0.90], and custom-made footwear and offloading insoles (RR 0.53 [95% CI 0.33, 0.85]) showed beneficial effects for these interventions. Conclusions/interpretation: Four interventions were identified as being effective in preventing foot ulcers in people with diabetes, but uncertainty remains about what works and who is most likely to benefit

    A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history.

    Get PDF
    PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS

    Systemic pro-inflammatory response identifies patients with cancer with adverse outcomes from SARS-CoV-2 infection: the OnCovid Inflammatory Score

    Get PDF
    Background: Patients with cancer are particularly susceptible to SARS-CoV-2 infection. The systemic inflammatory response is a pathogenic mechanism shared by cancer progression and COVID-19. We investigated systemic inflammation as a driver of severity and mortality from COVID-19, evaluating the prognostic role of commonly used inflammatory indices in SARS-CoV-2-infected patients with cancer accrued to the OnCovid study. Methods: In a multicenter cohort of SARS-CoV-2-infected patients with cancer in Europe, we evaluated dynamic changes in neutrophil:lymphocyte ratio (NLR); platelet:lymphocyte ratio (PLR); Prognostic Nutritional Index (PNI), renamed the OnCovid Inflammatory Score (OIS); modified Glasgow Prognostic Score (mGPS); and Prognostic Index (PI) in relation to oncological and COVID-19 infection features, testing their prognostic potential in independent training (n=529) and validation (n=542) sets. Results: We evaluated 1071 eligible patients, of which 625 (58.3%) were men, and 420 were patients with malignancy in advanced stage (39.2%), most commonly genitourinary (n=216, 20.2%). 844 (78.8%) had ≥1 comorbidity and 754 (70.4%) had ≥1 COVID-19 complication. NLR, OIS, and mGPS worsened at COVID-19 diagnosis compared with pre-COVID-19 measurement (p<0.01), recovering in survivors to pre-COVID-19 levels. Patients in poorer risk categories for each index except the PLR exhibited higher mortality rates (p<0.001) and shorter median overall survival in the training and validation sets (p<0.01). Multivariable analyses revealed the OIS to be most independently predictive of survival (validation set HR 2.48, 95% CI 1.47 to 4.20, p=0.001; adjusted concordance index score 0.611). Conclusions: Systemic inflammation is a validated prognostic domain in SARS-CoV-2-infected patients with cancer and can be used as a bedside predictor of adverse outcome. Lymphocytopenia and hypoalbuminemia as computed by the OIS are independently predictive of severe COVID-19, supporting their use for risk stratification. Reversal of the COVID-19-induced proinflammatory state is a putative therapeutic strategy in patients with cancer
    corecore