27 research outputs found

    IL-18Rα-deficient CD4+T cells induce intestinal inflammation in the CD45RBhitransfer model of colitis despite impaired innate responsiveness

    Get PDF
    IL-18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T-cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL-18Rα and provide evidence that IL-18Rα expression is induced on these cells subsequent to their entry into the intestinal mucosa. Using the CD45RBhi T-cell transfer colitis model, we show that IL-18Rα is expressed on IFN-γ+, IL-17+, and IL-17+IFN-γ+ effector CD4+ T cells in the inflamed colonic lamina propria (cLP) and mesenteric lymph node (MLN) and is required for the optimal generation and/or maintenance of IFN-γ-producing cells in the cLP. In the steady state and during colitis, TCR-independent cytokine-induced IFN-γ and IL-17 production by intestinal CD4+ T cells was largely IL-18Rα−dependent. Despite these findings however, IL-18Rα−deficient CD4+ T cells induced comparable intestinal pathology to WT CD4+ T cells. These findings suggest that IL-18-dependent cytokine induced activation of CD4+ T cells is not critical for the development of T-cell-mediated colitis

    High expression of antioxidant proteins in dendritic cells: possible implications in atherosclerosis

    Get PDF
    Dendritic cells (DCs) display the unique ability to activate naive T cells and to initiate primary T cell responses revealed in DC-T cell alloreactions. DCs frequently operate under stress conditions. Oxidative stress enhances the production of inflammatory cytokines by DCs. We performed a proteomic analysis to see which major changes occur, at the protein expression level, during DC differentiation and maturation. Comparative two-dimensional gel analysis of the monocyte, immature DC, and mature DC stages was performed. Manganese superoxide dismutase (Mn-SOD) reached 0.7% of the gel-displayed proteins at the mature DC stage. This important amount of Mn-SOD is a primary antioxidant defense system against superoxide radicals, but its product, H(2)O(2), is also deleterious for cells. Peroxiredoxin (Prx) enzymes play an important role in eliminating such peroxide. Prx1 expression level continuously increased during DC differentiation and maturation, whereas Prx6 continuously decreased, and Prx2 peaked at the immature DC stage. As a consequence, DCs were more resistant than monocytes to apoptosis induced by high amounts of oxidized low density lipoproteins containing toxic organic peroxides and hydrogen peroxide. Furthermore DC-stimulated T cells produced high levels of receptor activator of nuclear factor kappaB ligand, a chemotactic and survival factor for monocytes and DCs. This study provides insights into the original ability of DCs to express very high levels of antioxidant enzymes such as Mn-SOD and Prx1, to detoxify oxidized low density lipoproteins, and to induce high levels of receptor activator of nuclear factor kappaB ligand by the T cells they activate and further emphasizes the role that DCs might play in atherosclerosis, a pathology recognized as a chronic inflammatory disorder.Comment: cpyright: American Society of Biochemistry and Molecular Biolog

    Flt3(+) macrophage precursors commit sequentially to osteoclasts, dendritic cells and microglia

    Get PDF
    BACKGROUND: Macrophages, osteoclasts, dendritic cells, and microglia are highly specialized cells that belong to the mononuclear phagocyte system. Functional and phenotypic heterogeneity within the mononuclear phagocyte system may reveal differentiation plasticity of a common progenitor, but developmental pathways leading to such diversity are still unclear. RESULTS: Mouse bone marrow cells were expanded in vitro in the presence of Flt3-ligand (FL), yielding high numbers of non-adherent cells exhibiting immature monocyte characteristics. Cells expanded for 6 days, 8 days, or 11 days (day 6-FL, day 8-FL, and day 11-FL cells, respectively) exhibited constitutive potential towards macrophage differentiation. In contrast, they showed time-dependent potential towards osteoclast, dendritic, and microglia differentiation that was detected in day 6-, day 8-, and day 11-FL cells, in response to M-CSF and receptor activator of NFκB ligand (RANKL), granulocyte-macrophage colony stimulating-factor (GM-CSF) and tumor necrosis factor-α (TNFα), and glial cell-conditioned medium (GCCM), respectively. Analysis of cell proliferation using the vital dye CFSE revealed homogenous growth in FL-stimulated cultures of bone marrow cells, demonstrating that changes in differential potential did not result from sequential outgrowth of specific precursors. CONCLUSIONS: We propose that macrophages, osteoclasts, dendritic cells, and microglia may arise from expansion of common progenitors undergoing sequential differentiation commitment. This study also emphasizes differentiation plasticity within the mononuclear phagocyte system. Furthermore, selective massive cell production, as shown here, would greatly facilitate investigation of the clinical potential of dendritic cells and microglia

    Lysates of Methylococcus capsulatus Bath induce a lean-like microbiota, intestinal FoxP3+RORγt+IL-17+ Tregs and improve metabolism

    Get PDF
    Interactions between host and gut microbial communities are modulated by diets and play pivotal roles in immunological homeostasis and health. We show that exchanging the protein source in a high fat, high sugar, westernized diet from casein to whole-cell lysates of the non-commensal bacterium Methylococcus capsulatus Bath is sufficient to reverse western diet-induced changes in the gut microbiota to a state resembling that of lean, low fat diet-fed mice, both under mild thermal stress (T22 °C) and at thermoneutrality (T30 °C). Concomitant with microbiota changes, mice fed the Methylococcus-based western diet exhibit improved glucose regulation, reduced body and liver fat, and diminished hepatic immune infiltration. Intake of the Methylococcu-based diet markedly boosts Parabacteroides abundances in a manner depending on adaptive immunity, and upregulates triple positive (Foxp3+RORγt+IL-17+) regulatory T cells in the small and large intestine. Collectively, these data point to the potential for leveraging the use of McB lysates to improve immunometabolic homeostasis.publishedVersio

    Plasticité fonctionnelle des cellules dendritiques (implications dans l'homéostasie osseuse)

    No full text
    LYON-ENS Sciences (693872304) / SudocSudocFranceF

    Deletion of IRF4 in Dendritic Cells Leads to Delayed Onset of T Cell-Dependent Colitis

    No full text
    Classical dendritic cells (cDC) can be classified into two major subsets: Irf8-dependent cDC1 and Irf4-expressing cDC2. Although these subsets play distinct roles in intestinal immune homeostasis, their functions in T cell-driven colitis remain unknown. To assess the role of IRF4 expression in cDC2 in T cell-driven colitis, CD11c-Cre.Irf4fl/fl and Irf4fl/fl mice were backcrossed onto a Rag-1-/- background and used as recipients of CD45RBhiCD4+ T cells. Colitis score and innate immune cell influx were reduced in Cre+ mice 4 wk posttransfer, and these changes were associated with reduced CD4+ T cell counts in both the mesenteric lymph nodes and colon. By 7 wk, colitis score and colon CD4+ T cell numbers were similar in Cre+ and Cre- mice despite a selective reduction in Th17 cells in the colon of Cre+ mice and a continued reduction in CD4+ T cell numbers in mesenteric lymph nodes. Cotransfer of CD25+CD45RBlo CD4+ T cells prevented CD45RBhiCD4+ T cell-driven colitis in both Cre+ and Cre- recipients, demonstrating that IRF4 expression by cDC is not required for CD4+ regulatory T cell-mediated control of colitis. Collectively these results suggest a role for IRF4 expression in cDC2 in the generation of colitogenic CD4+ T cells, which becomes redundant as colitis progresses

    Physiological Role of TNF in MucosalImmunology: Regulation of Macrophage/Dendritic Cell Function

    No full text
    Intestinal mononuclear phagocytes, comprising macrophages (MΦs) and dendritic cells (DCs), play important roles in the generation and the regulation of immune responses to intestinal antigens, and alterations in the development and/or the function of these cells are thought to contribute to the pathogenesis of inflammatory bowel disease. In this review, we discuss the role of tumor necrosis factor-a (TNF) in regulating multiple aspects of intestinal M? and DC physiology, including their differentiation, migration, maturation, survival and effector functions. In inflammatory bowel disease, TNF signaling has been implicated in reprogramming monocyte differentiation from the anti-inflammatory MΦ lineage towards the pro-inflammatory mononuclear phagocyte lineage. These cells become a major source of TNF and, thus, may contribute to the chronic inflammatory process. Finally, we highlight some of the important gaps in our current knowledge regarding the role of TNF in MΦ and DC physiology and suggest important directions for future research in this field
    corecore