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Abstract

Dendritic cells (DC) displays the unique ability to activate naive T cells and to initiate primary T-cell

responses revealed in DC – T cell alloreactions. DC frequently operate under stress conditions.

Oxidative stress enhances the production of inflammatory cytokines by DC. We performed a proteomic

analysis in order to see which major changes occur, at the protein expression level, during DC

differentiation and maturation. Comparative 2D gel analysis of the monocyte, immature DC and

mature DC stages were performed. Manganese superoxide dismutase (MnSOD), reaches 0.7% of the

gel-displayed proteins at the mature DC stage. This important amount of MnSOD is a primary

antioxidant defence system against superoxide radicals, but its product, H2O2, is also deleterious for

cells. Peroxiredoxin enzymes (Prx) play an important role in eliminating such peroxide. Prx1

expression level continuously increases during DC differentiation and maturation while Prx6

continuously decreases and Prx2 peaks at the immature DC stage. As a consequence, DC are more

resistant than monocytes to apoptosis induced by high amounts of oxidized low-density lipoproteins

(oxLDL) containing toxic organic peroxides and hydrogen peroxide. Furthermore, DC-stimulated T

cells produce high levels of receptor activator of nuclear factor B ligand (RANKL), a chemotactic and

survival factor for moncocytes and DC. This study provides insights into the original ability of DC to

express very high levels of antioxidant enzymes such as MnSOD and Prx1, to detoxify oxLDL and to

induce high levels of RANKL by the T cells they activate, and further emphasizes the role that DC

might play in atherosclerosis, a pathology recognized as a chronic inflammatory disorder.
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 1-Introduction

Dendritic cells (DC) are the most potent antigen-presenting cells (APC) in the body, and their unique

ability to stimulate a primary T-cell response places them at the centre of the immune response [1].

Immature DC differentiate from bone marrow progenitors or from monocytes and then either stay in

the blood stream or migrate in the peripheral tissues. Immature DC, such as Langerhans cells in the

skin, survey incoming pathogens. They are equipped with receptors to become activated when exposed

to pathogen associated molecular patterns (PAMP) [2]. Their capacity to recognize pathogens and

become activated therefore represents the first critical event in the initiation of the immune response.

Encounter with a pathogen leads to DC maturation and migration through lymphatic vessels to T cell

area of secondary lymphoid organs. Antigen presentation by DC activates specific naive T cells to

express CD40 ligand (CD154) [3], which, in turn, activates DC, achieving their terminal

differentiation, as assessed by the up-regulation of MHC-I and II molecules and of co-stimulatory

molecules CD80/CD86 and by the production of cytokines, such as IL-12 and IL-1α/β, which all

participate in T cell stimulation [3-5] and in the development of adaptive immunity [4], [6]. Mature DC

modulate T-cell responses through the secretion of various cytokines such as IL-12, promoting Th1-

type cellular immune response [7] or IL-4 following thymic stromal lymphopoietin activation,

promoting Th2-type humoral immune response  [8]. Last, a DC apoptosis program can be triggered at

the end of the maturation process, so that mature DC do not produce an over stimulation of the immune

system [9].  DC frequently operate under stress conditions induced by tissue damage, infectious

pathogens or inflammatory reactions. Oxidative stress enhances the production of inflammatory

cytokines by DC [10].

Atherosclerosis is considered as a chronic inflammatory disease of the arterial vasculature, initiated by

endothelial cell damage and implicating both monocytes, DC and macrophages that operate under

intense oxidative stress conditions. Indeed, the accumulation of oxidized low-density lipoproteins

(oxLDL), generated from native LDL trapped into the subendothelial space of the arterial wall, is a

main feature of the disease and plays a key role in its progression, leading to the formation of vascular

lesions [11], [12]. This accumulation of oxLDL induces the activation of macrophages and elicits an

oxidative burst [13], generating toxic components such as the superoxide anions, derived from the

NADPH oxidase activity. Lipid peroxides and hydrogen peroxide directly contained in oxLDL are also

toxic per se [14]. Due to their pro-oxidant actions, superoxide anions resulting from macrophage

activation by oxLDL, as well as lipid peroxides contained in the oxLDL, are able to induce resident

monocytes and macrophages apoptosis [14-16]. This apoptosis is a commun feature within early

atherosclerotic lesions [17]. Superoxide anions can be reduced into H2O and O2 by combination of the

actions of cellular superoxide dismutase (SOD) and peroxiredoxin (Prx) or catalase or other

peroxidases. Thus, it is hypothesized that monocytes and macrophages undergo apoptosis when their

antioxidant enzymatic protection systems (SOD and Prx) are overflowed. Contrary to monocytes and

macrophages, the expression pattern of  oxidative stress response proteins in DC is still unknown.

Although both immature and mature DC have been observed in the atherosclerotic plaques in close

association with activated T cells [18], and in para-aortic and jugulodigastric lymph nodes attached to

atherosclerotic arterial wall [19], their exact role in atherosclerosis progression is still poorly

understood. These studies however suggest that vascular DC may be implicated in the local induction

of immune and auto-immune reactions [20], [21].

Besides their toxic action on diverse cell types, OxLDL also increase monocyte adhesion to the

endothelial cell layer, as well as their transmigration [22-24] towards adjacent tissues. Finally oxLDL

trigger the production of pro-inflammatory cytokines such as monocyte chemoattractant protein-1

(MCP-1), M-CSF, and granulocyte macrophage colony-stimulating factor (GM-CSF) by endothelial

cells and stimulate monocyte differentiation into DC [25].
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Here we investigated the relationship between oxidative stress protein expression profiles and DC

differentiation and maturation. We performed a proteomic analysis of both immature and mature DC

derived from monocytes in the presence of IL-4 and GM-CSF and compared it to monocyte proteome.

This comparative proteomic approach revealed the original ability of DC to express high levels of

antioxidant enzymes such as MnSOD and Prx. These high expression levels of antioxydant enzymes

confer a great capacity to DC to resist to apoptosis induced by oxLDL, mimicking the oxidative stress

microenvironment of atherosclerosis lesions. Moreover, when co-cultured with T cells, DC produce

themselves, and induce T cells to produce, high levels of receptor activator of NF-κB ligand (RANKL),

a chemotactic factor for monocytes and a key survival factor for DC [26-28]. Altogether, these in vitro

results suggest that DC play a crucial role in the atherosclerosis pathogenesis and in the maintenance of

its chronicity.

2-Materials and methods

Cell culture and reagents

Monocytes and T cells were purified [29] from the adult blood of healthy volunteer donors

(Etablissement français du sang, Lyon Gerland, France). Monocyte-derived DC were generated in

vitro, as previously described [29]. Briefly, monocytes were seeded at 10
6
 cells/mL and maintained in

RPMI 1640 (Life Technologies, Paisley, Scotland) supplemented with 10 mM Hepes, 2 mM L-

glutamine, 40 µg/mL gentamicin (Life Technologies), 10% heat-inactivated FCS (Boehringer

Mannheim, Meylan, France), 50 ng/mL hrGM-CSF and 500 U/mL hrIL-4. After 6 days of culture,

more than 95% of the cells were DC as assessed by CD1a labelling. Recombinant human GM-CSF and

IL-4 were purchased from PeproTech (Rocky Hill, New Jersey). For maturation, immature DC were

plated at 10
6
 cells/ml and were stimulated with 1 µg/mL LPS or with 10

5
/ml irradiated (7,000 rads)

fibroblastic CD40L- or control CD32- transfected L cells (both kindly provided by Schering-Plough

Laboratory for Immunological Research, Dardilly, France) for 24h. For OxLDL cultures, 10%

lipoprotein-deficient FCS (Sigma-Aldrich) was used. T cell activation was performed at 10
6
 cells/mL

with 1µg/mL anti-CD3 (HIT3a murine mAb) and 10µg/mL anti-CD28 (CD28.2 murine mAb) from

PharMingen (California). For proteomic studies, cells were harvested by centrifugation, rinsed in PBS

and resuspended in homogeneization buffer (0.25 M sucrose, 10 mM Tris-HCl, pH 7.5, 1 mM EDTA).

A buffer volume approximately equal to the packed cell volume was used. The suspension was

transferred to a polyallomer ultracentrifuge tube and the cells were lysed by the addition of 4 volumes

(respective to the suspension volume) of 8.75 M urea, 2.5 M thiourea, 25 mM spermine base and 50

mM DTT. After 1 hour at room temperature, the extracts were ultracentrifuged (30 minutes at

200000g). The supernatant was collected and the protein was determined by a Bradford assay, using

bovine serum albumin as a standard. Carrier ampholytes (0.4 % final concentration) were added and

the protein extracts were stored at -20°C.

Human Prx2 was purified from freshly isolated human red blood cell by ion-exchange chromatography

and gel filtration, as previously described  [30].

LDL preparation

LDL (1.025 ≤ density ≤ 1.055 g/ml) was isolated from human plasma of normolipidemic healthy

individuals by ultracentrifugation, as described previously [25]. The protein content of LDL was

estimated by Coomassie Protein MicroAssay procedure (Pierce, Rockford, IL), and its lipid

composition was determined using cholesterol RTU, triglycerides enzymatic PAP 150, and

phospholipids enzymatic PAP 150 kits from bioMérieux (Marcy l’Etoile, France).

LDL oxidation
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LDL concentration was adjusted at 1 mg/ml of protein by dilution in PBS and dialyzed at 4°C against

PBS to eliminate EDTA. Cu2+-mediated oxidation was conducted at 37°C for 24 h by dialysis against

5 µM CuSO4/ PBS. The reaction was stopped by addition of 40 µM butylated-hydroxytoluene and

extensive dialysis at 4°C against PBS containing 100 µM diethylendiamine pentaacetic acid.

Flow cytometry.

Cell suspensions were labelled according to standard procedures using the following monoclonal

antibodies: CD1a-PE, CD14-PE, CD25-PE, CD80-FITC, CD83-PE, CD86-PE, MHC I (HLA-ABC-

FITC), MHC II (HLA-DR-FITC) or an isotype control (Beckman Coulter, Villepinte, France). 0.5

µg/mL of propidium iodide were added to detect apoptotic cells. Immunostaining was performed in 1%

BSA and 3% human serum-PBS and then quantified on a FACSCalibur (Becton Dickinson, Pont de

Claix, France).

Immunofluorescence staining.

Cells cultured on glass coverslips were first fixed for 10 min with 3.7% formaldehyde in phosphate

buffered saline (PBS) and permeabilized with 0.1% Triton X-100 in PBS
 
for 7 min. After pre-

incubation for 20 min in normal human serum with 10% PBS, cells were incubated with anti-RANKL

(sc-9073 rabbit polyclonal Santa-Cruz) and anti-CD3 (UCHT1 mAb Beckman Coulter) antibodies.

Coverslips were then treated with the appropriate conjugated secondary antibodies (donkey anti-rabbit

or donkey anti-mouse antibodies, Jackson ImmunoResearch). Primary and secondary antibodies were

applied for 60 min, in a humidified
 
chamber. Between each step, coverslips were washed three times

for 5 min in PBS buffer. Observations were performed by epifluorescence
 
using a Zeiss axioplan

microscope.

Allogeneic T cell stimulation.

DC were cultured in various numbers (10 to 10
5
), for 7 days, in the presence of a constant number of T

cells (10
5
 cells / well) purified from the blood of another donor (allogeneic), as previously described

[31]. [
3
H] Thymidine incorporation was measured after a 12h pulse with 1 µCi [

3
H]TdR/ well, using a

Top Count NXT counter (Packard Bioscience, PerkinElmer Life Sciences, France).

Western blots

Cells were lysed in a buffer containing 200 mM NaCl, 40 mM Tris–HCl pH 8.0, 1% NP-40 2 mM

EDTA, 1mM PMSF, 1mM NaF, 10µg/mL aprotinin and a mixture of protease inhibitors (protease

inhibitor set III, Calbiochem, Darmstadt, Germany) for 15 min at 4°C. Insoluble materials were

removed by centrifugation at 10 000 g for 10 min. Proteins from cell lysates were separated by

SDS–PAGE using NuPAGE 4-12% Bis-Tris Gel (Invitrogen, Cergy Pontoise, France), then transferred

to Immobilon-P membranes (Millipore, Bedford, MA). Membranes were blocked using 5% BSA in

TBS-T (20 mM Tris (pH 7.6), 130 mM NaCl, and 0.1% Tween 20) and incubated for 1 h with a

specific anti-MnSOD antibody (#06-984, Upstate cell signaling solutions, Charlottesville, VA).

Immunoreactive bands were visualized by using a secondary goat anti-rabbit HRP-conjugated antibody

(Jackson ImmunoResearch, West Grove, PE) and chemiluminescence (ECL Western Blotting Substrate

Kit, Pierce, Rockford, IL). The membranes were not stripped before reblotting with anti-actin antibody

(A-2066, Sigma-Aldrich Chimie, Saint Quentin Fallavier, France).

Two-dimensional electrophoresis

Two-dimensional electrophoresis was performed with immobilised pH gradients for isoelectric

focusing. Home-made linear 4-8 or 4-12 gradients were used [32] and prepared according to published

procedures [33]. IPG strips were cut with a paper cutter, and rehydrated in 7M urea, 2M thiourea, 4%
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CHAPS, 0.4% carrier ampholytes (3-10 range), containing either 20mM DTT (4-8 gradients) or 5mM

Tris cyanoethyl phosphine (purchased from MolecularProbes, for 4-12 gradients) [34]. The protein

sample was mixed with the rehydration solution in the case of 4-8 gradients, or cup-loaded at the anode

for 4-12 gradients. Isoelectric focusing was carried out for a total of 60000 Vh. After focusing, the

strips were equilibrated for 2 x 10 minutes in 6M urea, 2% SDS, 125 mM Tris-HCl pH 7.5 containing

either 50mM DTT (first equilibration step) or 150mM iodoacetamide (second equilibration step). The

equilibrated strip was loaded on the top of a 10% or 11% polyacrylamide gel, and submitted to SDS

PAGE at 12W/ gel, using the Tris-taurine system [35].
After migration, the gels were stained either with silver nitrate for 2D gels with a pH 4-8 gradient [36].,

or with ammoniacal silver for 2D gels with a pH 4 to 12 gradient [37].  Quantitative gel analysis was

performed on the silver-stained gels with the Melanie II software (Genebio, Geneva, Switzerland). The

experiments were performed in triplicate, starting with different cell batches. Several gels were made

for each culture, in order to select gels with very close detection signal levels for quantitative analysis.

This allowed us to keep the gel analysis parameters constant for better reproducibility. As a matter of

facts, the total spot intensity in the analyzed gels ranged from 531400 to 662750 arbitrary absorbance

units, with a mean of 600290 units, i.e. a maximum deviation of ±11%.

Mass spectrometry

In gel digestion :

Excised gel slice rinsing was performed by the Massprep (Micromass, Manchester, UK) as described

previously [38]. Gel pieces were completely dried with a Speed Vac before digestion. The dried gel

volume was evaluated and three volumes trypsin (Promega, Madison, US) 12.5ng/µl freshly diluted in

25mM NH4HCO3, were added. The digestion was performed at 35°C overnight. Then, the gel pieces

were centrifuged for 5 min in a Speed Vac and 5µl of 35% H2O/ 60% acetonitrile/ 5% HCOOH were

added to extracted peptides. The mixture was sonicated for 5 min and centrifuged for 5 min. The

supernatant was recovered and the procedure was repeated once.

MALDI-TOF-MS analysis

Mass measurements were carried out on an ULTRAFLEX™ MALDI TOF/TOF mass spectrometer

(Bruker-Daltonik GmbH, Bremen, Germany).This instrument was used at a maximum accelerating

potential of 20kV and was operated either in reflector positive mode. Sample preparation was

performed with the dried droplet method using a mixture of 0.5mL of sample with 0.5mL of matrix

solution. The matrix solution was prepared from a saturated solution of α-cyano-4-hydroxycinnamic

acid in H2O/ 50% acetonitrile diluted 3 times. Internal calibration was performed with tryptic peptides

resulting from autodigestion of trypsin (monoisotopic masses at m/z=842.51 , m/z=1045.564 , m/z=

2211.105).

MS Data analysis

Monoisotopic peptide masses were assigned and used for databases searches using the search engines

MASCOT (Matrix Science, London, UK) [39], and Aldente (www.expasy.org). All proteins present in

Swiss-Prot were used without any pI and Mr restrictions. The peptide mass error was limited to 90

ppm, one possible missed cleavage was accepted.

MS/MS data analysis

(LC-MS-MS) analysis of the digested proteins were performed using a CapLC capillary LC system

(Micromass, Manchester, UK) coupled to a hybrid quadrupole orthogonal acceleration time-of-flight

tandem mass spectrometer (Q-TOF II, Micromass). The LC-MS union was made with a PicoTip (New

Objective, Woburn,.MA) fitted on a ZSPRAY (Micromass) interface. Chromatographic separations
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were conducted on a reversed-phase (RP) capillary column (Pepmap C18, 75µm i.d., 15 cm lenght, LC

Packings) with a 200 nL/min flow. The gradient profile used consisted of a linear gradient from 95% A

(H2O / 0.05% HCOOH) to 45% B ( acetonitrile / 0.05% HCOOH) in 35 min. followed by a linear

gradient to 95% B in 1 min. Mass data acquisitions were piloted by MassLynx software (Micromass,

Manchester, UK) using automatic switching between MS and MS/MS modes. The internal parameters

of Q-TOF II were set as follows. The electrospray capillary voltage was set to 3.0 kV, the cone voltage

set to 30 V, and the source temperature set to 80°C. The MS survey scan was m/z 300-1500 with a scan

time of 1 s and a interscan time of 0.1s. When the intensity of a peak rose above a threshold of 8

counts, tandem mass spectra were acquired. Normalized collision energies for peptide fragmentation

was set using the charge-state recognition files for +1, +2 and +3 peptides ions. The scan range for

MS/MS acquisition was from m/z 50 to 1500 with a scan time of 1 s and a interscan time of 0.1s.

Fragmentation was performed using argon as the collision gas and with a collision energy profile

optimized for various mass ranges of precursor ions.

Mass data collected during a nanoLC-MS/MS analysis were processed and converted into a .PKL file

to be submitted to the search software MASCOT (Matrix Science, London, UK).

Statistics

Statistical comparisons were made using the Student’s two tailed t test. All results are representative of

at least 3 experiments and expressed as means ± SD of at least 3 replicates.

3-Results

Human monocyte-derived DC are classically CD1a
+
 and CD14

-
, opposite to monocytes. The immature

DC phenotype was attested by intermediate surface expression levels of HLA-ABC and HLA-DR and

by negative or low expression of CD25, CD83 and co-stimulatory molecules CD80, CD86 (Fig. 1a).

Following stimulation by the bacterial-derived danger signal LPS or by the T cell-derived signal CD40-

ligand, DC phenotype displayed the typical inductions of CD25, CD83 and enhancements of CD80,

CD86, HLA-ABC and HLA-DR surface expressions. DC differed from monocytes in their function

since they elicited allogeneic T-cell responses (Fig. 1b).

Comparative 2D gel analysis of the monocyte, immature DC and mature DC stages is shown on figures

2 and 3. The most striking and reproducible differences indicated by arrows on the figures, as pulled

out from a quantitative gel image analysis, were further analyzed by mass spectrometry to determine

the nature of these differentially-expressed proteins. Gels with close detection sensitivity were selected,

so that the detection parameters for image analysis could be kept constant and lead to close quantitative

values (see methods section). It is striking to note that there are relatively few reproducible differences,

especially between immature and mature dendritic cells. This step was our initial main focus, as the

monocyte-immature dendritic cell transition had been investigated before [40]. These few differences

point to well known functions of dendritic cells, such as antigen presentation (HLA class II), or

cytokine production (IL1). They also point out cytoskeletal remodelling (gelsolin), which is obvious

when taking into account the morphological changes between monocytes, immature and mature

dendritic cells. However, one of the most striking diffferences is MnSOD. This protein has been

previously described as heavily induced during the monocyte-immature DC transition [40], and it is

rather surprising to see that despite the high levels reached at this stage, a further induction is observed

during DC maturation. As MnSOD is an oxidative stress response protein, which expression is often

modulated during pro-apoptotic conditions [41] or during cancer transformation [42], this oriented us

to focus our study on oxidative stress response proteins. This was further reinforced by the fact that

Prx1, which is also an important oxidative stress response protein, and Trx1, which plays an important
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role in several cellular redox processes, were also shown to be induced at both stages, as MnSOD.

An additional benefit of the proteomics approach in the study of peroxiredoxins is that this technology

allows the access to both native and oxidized forms of the proteins [43], [44]. From previously

mentioned studies, we knew the positions of the various peroxiredoxins spots on the gels. We however

reassessed their positions on our DC gels by mass spectrometry to further secure our identifications.

Sequence coverages were always above 50% (data not shown), thereby providing safe protein

identifications. The identification of the peroxiredoxins and of Mn SOD was however also secured by

MS/MS analysis (see supplementary material)

The quantitative results obtained on oxidative stress proteins are summarized in Table 1.  Although

they were identified on the gels as very minor spots (indicated by arrowheads), the oxidized forms of

Prx1, Prx2 and Prx6 are not mentioned in the table, as they did not show any quantitative variation

along DC differentiation and maturation processes. Expressions of the various proteins belonging to the

Prx family are divergent and depend on the differentiation and maturation states. Some Prx decreased

moderately but steadily during the differentiation and maturation process (Prx6, Prx4), while others

increased steadily (Prx1), and others showed a bell-shaped expression curve (Prx2), peaking at the

immature DC stage. The low but steady expression level of the mitochondrial Prx3 is surprising, as it is

a mitochondrial oxidative stress response protein (as MnSOD). However, MnSOD is expressed at

much higher levels and also shows a clear induction in our biological system. Finally, results similar to

those obtained with CD40-ligand were also obtained upon DC maturation with LPS (data not shown).

In  order to confirm those results, we used two different strategies. One is a co-migration strategy (Fig.

4). Pure Prx2 purified from human red blood cells [30] was added in increasing amounts to monocytes

extracts, and the spiked extracts were separated by two-dimensional electrophoresis and submitted to

image analysis. The results obtained showed a two-fold difference between the amount of Prx2 that

should be added to mimic the intensity observed in DC (e.g. 20ng for immature DC) and the amount

that was deduced from the quantitative image measurements (theoretically 40 ng).  This can be

accounted for by postulating that half of the loaded proteins are lost in the 4-8 two-dimensional

analysis, either from proteins lying outside the separation space (in pI and Mw) or from proteins lost

because of poor solubility (e.g. membrane proteins). Such a quantitative yield has already been

described [45]. The second strategy is western blotting, and was used for MnSOD (Fig.5). SDS-PAGE

gels were used to secure against any artefact arising from 2D electrophoresis. The results clearly show

an induction of the protein, as observed from 2D gels. However, the induction factors observed by

blotting were clearly inferior to those observed by 2D gel electrophoresis, in accordance with the

known non linear behavior of western blotting [46].

Due to their high rate of anti-oxidant enzymes, we postulated that DC are more resistant to oxidative

environments than monocytes. In human advanced atherosclerosis, the atherosclerotic lesions (plaques)

constitute an extensive oxidative environment. Indeed, oxLDL accumulating in these lesions, trigger

the production of superoxide and peroxide by macrophages, but also directly exert a toxic activity

towards different cell types, because of the lipid peroxides and hydrogen peroxide they contain. In vitro

experiments have previously revealed that oxLDL are toxic and apoptosis-inducing for macrophages

and smooth muscle cells [15], [47]. We thus studied and compared the survival capacities of both DC

and monocytes exposed to high concentration of oxLDL. Cell death was measured after 24h of

incubation by intracellular incorporation of propidium iodide.. The number of apoptotic monocytes

following oxLDL treatment dramatically increased in the presence of oxLDL from 12% to 76% (Fig.

6a). A preliminary dose response study showed that monocytes were as potent as DC to detoxify

oxLDL until a 50µg/mL concentration (30 to 35% of death). When oxLDL concentration exceeded this

50µg/mL threshold, more than 87,3% of monocytes underwent apoptosis while immature DC and
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mature DC were less affected (47,8 and 67,3% of death respectively) (Fig. 6b). More detailled

investigations, working with 75µg/mL oxLDL doses demonstrated that immature DC and, to a lower

extent, mature DC were more resistant than monocytes to the apoptosis induced by high doses of

oxLDL (Fig. 6c). Thus the survival of immature DC in the oxidative stress environment generated by

oxLDL in vitro is better than monocyte survival. This finding can be correlated to  their respective

expression levels of MnSOD and Prx.

The enhanced capacity of immature DC to survive in an oxLDL-enriched environment, compared to

monocytes, as well as the presence of DC-associated T cells in atherosclerosis lesions, lead us to

investigate the production of RANKL in DC/Tcell co-cultures. RANKL is the ligand of the TNF

receptor family member RANK, expressed on T cells activated by anti-CD3 and anti-CD28 antibodies

[48] and on memory T cells [27]. It is a crucial survival factor for DC and a chemotactic factor for

monocytes [26], [28], [49]. Moreover, RANK and RANKL expressions have reported in the

atherosclerotic plaques [50]. Immunofluorescent staining were used to study the expression of RANKL

on T cells co-cultured with monocytes or DC. T cells co-cultured with monocytes weakly expressed

RANKL and monocytes did not express RANKL themselves. In contrast, T cells co-cultured for 5 days

with DC strongly expressed RANKL on their surface. Interestingly, DC also displayed RANKL

expression (Fig. 7). Consequently besides MnSOD and Prx overexpressions, DC-induced RANKL

expression may also be a key parameter accounting for a role of DC in atherosclerosis pathogenesis.

4-Discussion

Because of their outstanding interest in immunology, gene expression in DC has been studied in

details, both at the monocyte-immature DC transition [40], [51], and at the immature-mature DC

transition [52], [53]. Proteomic study complementing the latter transcriptomic studies on DC

maturation was required. We focussed our study on a major protein induction observed in proteomics:

MnSOD reaches (by combining the two major MnSOD spots) 0.7% of the gel-displayed proteins at the

mature DC stage. This important amount oriented us to study the oxidative stress response pathways.

MnSOD is up-regulated by a variety of pro-inflammatory mediators, such as TNF- α, LPS, IL-1β and

IFN-γ [54], [55]. Therefore, the observed induction of MnSOD protein can be correlated with its well-

documented role as an anti-apoptotic protein [41], [56]. The main activity of MnSOD enzyme is to

reduce anion superoxides into hydrogen peroxides. Together with glutathione peroxidase and catalase,

Prx enzymes play an important role in eliminating peroxides [57], which are produced by numerous

pathways, including the dismutation of superoxide. For example, Prx1 and Prx2 are involved in the

removal of H2O2 in thyroid cells and can protect these cells from undergoing apoptosis [58]. Only a

moderate increase of DC apoptosis was observed in the presence of H2O2, [59] probably due to their

high Prx expression. Strikingly, H2O2 rather seems to be an activating signal for DC, as it stimulates

their production of IL-8 and TNF-α in a dose-dependent manner [10].

The high amount of antioxidant enzymes awards DC the ability to survive in highly oxidant

environment. This also correlates with the anti-apoptotic effects observed upon DC maturation [60].

Recent studies demonstrated that oxLDL promote DC differentiation from monocytes [25], whereas

oxLDL induce apoptosis of human macrophages, a main feature in the first steps of atherogenesis [61].

As oxLDL produce both organic peroxides and hydrogen peroxide [14], it was interesting to study the

changes in Prx expression during DC differentiation and maturation. In this case, the proteomic study

is especially well-suited, as the native and oxidatively-inactivated forms of Prx can be separated on 2D

gels [43], [44]. In the case of DC differentiation and maturation, we did not notice any changes in these

oxidized forms, which were present at very low amounts. However, interesting quantitative findings

could be made on the normal forms of Prx. First of all, the relative amounts of the various Prx are very
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different. Mitochondrial Prx3 was always expressed at low levels. However, among the cytosolic Prx

(Prx1, 2 and 6), Prx2 is expressed at much lower level than Prx1 or Prx6 in monocytes (350 versus

above 2000 ppm), while this is not the case in Jurkat cells (where Prx6 is almost undetectable [43]) or

in HeLa cells, where Prx2 is expressed at much higher levels [44]. Prx2 counteracts the NF-κB

pathway [57], required for DC maturation [60]. It is therefore not surprising to find low levels of Prx2

in mature DC and, more generally, low levels of Prx2 in the monocyte-DC lineage compared to other

haematopoietic lineages [62].

It is generally believed that all mammalian cytosolic peroxiredoxins have similar substrate specificity

and are thus able to destroy both hydrogen peroxide and organic peroxides [63].  In terms of peroxide

destruction, the total cytosolic peroxiredoxin amount (i.e. Prx1 + Prx2 + Prx6) increases from 4800

ppm at the monocyte stage to 7500 ppm at the immature DC stage and to 9300 ppm at the mature DC.

Although Prx6 also exhibit other different actions, which may alter this simplistic scheme, our results

suggests that the Prx defence line is induced steadily during the DC differentiation and maturation.

This overall increase, however, masks divergent quantitative changes in the cytosolic peroxiredoxins

upon DC differentiation and maturation, which is the most surprising part of our data. Prx1

continuously increases during this process (close to 3 fold) while Prx6 continuously decreases (2 fold)

and Prx2 peaks at the immature DC stage.

An interesting trend is provided by the dual function of Prx6, which is at the same time a peroxiredoxin

and a phospholipase A2 (PLA2) [64]. Thus, a decrease in Prx6 amount also means a decrease in PLA2

activity. Easily oxidized polyunsaturated fatty acids are often found at the 2-position in phospholipids,

and are therefore liberated by PLA2 activity. Inhibition of PLA2 can be of physiological interest since

it prevents the rise of lysophosphatidylcholine levels and diminishes the death-inducing effects of

oxLDL on monocytes [65]. Apart from the context of oxidized lipids, it must be kept in mind that Prx6

is also an activator of NADPH oxidase [66], which is active in DC and especially mature ones [67]. All

these factors may explain the reorientation from Prx6 to Prx1, occurring during DC differentiation and

maturation.

In a more general frame, our data concerning monocytes and DC survival in an oxLDL-enriched stress

environment can not be directly correlated to the global cellular expression levels of anti-oxidant

enzymes Prx.  Indeed, mature DC, which have the highest contents in Prx, are more sensitive to

oxLDL-induced apoptosis than immature DC. Cell survival to oxLDL-induced death correlates rather

well with the cytosolic amount of Prx-2. This is rather surprising, as the various mammalian Prx are

known to be able to reduce the same scope of peroxides in vitro [63]. However, it must be kept in mind

that Prx interact with multiple and different partners [68]. These other interactions may alter their

operational efficiency, either by altering their catalytic efficiency or by segregating some types of Prx

away from the peroxide substrates generated by oxLDL, expecially lipid hydroperoxides. This may

explain why reistance to oxLDL correlates with the expression of one particular Prx and not with the

total Prx amount.

Concerning the role of DC in atherosclerosis, it is now accepted that mature DC, which are known to

be present in advanced plaques [69], contribute to plaque destabilization especially through T cell

activation and CD40–CD40L interactions play a key role in atherosclerosis progression [70]. Besides

being implicated in the induction of local immune  or auto-immune responses,  our results indicate, that

when interacting with T cells,  DC produce the cytokine RANKL themselves and induce its production

by T cells. RANKL, also called osteoprotegerin-ligand (OPGL) or TNF-related activation-induced

cytokine (TRANCE), is a chemotactic factor for monocytes, together with MCP-1 produced by

endothelial cells, following oxLDL stimulation in atherosclerosis. RANKL expression has been
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detected in advanced calcified lesions of atherosclerosis [50]. Thus DC and T cell-derived RANKL

might also enhance the recruitment of monocytes from blood towards the atherosclerosis lesions.

RANKL also plays important roles in DC homeostasis. RANKL-RANK interaction has been
 
shown to

sustain DC survival, by inducing the anti-apototic gene Bcl-xL [28]. Skin CD1a
+
 DC express RANK

but lack RANKL and are short-lived. However,
 
they can be rescued from cell death, either by

recombinant soluble
 
RANKL or by RANKL+ DC generated in vitro from CD34

+
 progenitors [28]. In

addition to enhancing DC survival, RANKL induces the expression of proinflammatory cytokines (IL-

6, IL-1) and T cell growth and differentiation factors (IL-12, IL-15) by DC in vitro [27]. RANKL also

provides co-stimulation required for efficient CD4+ T cell priming during viral infection in the absence

of CD40L/CD40 [49], [71]. These data further suggest that, besides recruiting more monocytes to the

atherogenic plaque, RANKL produced locally may also increase DC lifespan in the plaque and amplify

their functions, then contributing to the progression of atherosclerosis.

In conclusion, DC recruitment, maturation and survival may be critical factors for the progression of

atherosclerosis: (i) DC recruitment into the vascular wall is increased by atherogenic stimuli such as

oxLDL, TNF-α, and hypoxia [72], (ii) DC maturation is induced by different atherogenic stimuli such

as superoxide, oxLDL, lysophosphatidylcholine, nicotine, angiotensin II, atrial natriuretic peptide, and

TNF-α [7-10], [73], [74] (iii) DC survival in the atherosclerotic plaque environment is a third

important factor enabling these professional antigen presenting cells to induce a more important

antigen-specific T cell activation. The high anti-oxidant enzyme expression levels, the better resistance

to oxLDL-induced apoptosis and the production of RANKL upon DC/T cell interactions, that we

highlighted in this work are three elements which further implicate DC in the pathogenesis of

atherosclerosis and emphasize the role they may play in the amplification of the chronic inflammation,

together with hypercholesterolemia and oxidative stress. This role of DC in atherosclerosis progression

was recently further supported by  observations indicating that oxLDL and platelet-activating factor

contained in the lesions locally activate DC, but inhibit their migration to draining lymph nodes [75].

This activated-DC sequestration, in addition to enhanced DC survival, may further aggravate the local

inflammation.
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Figure legends

Figure 1: Phenotype and function of human monocytes and DC.

(A) Phenotype analysis of peripheral blood monocytes (dashed line), monocyte-derived immature DC

(thick line) and CD40L-activated mature DC (bold line) by cytofluorimetry. Cells were stained with

antibodies against CD1a, CD14, CD25, CD80, CD83, CD86, HLA-ABC and HLA-DR or related

isotype control antibodies (gray histogram). Data are representative of more than 10 experiments.

(B) T cell proliferation measured by thymidine incorporation, at indicated time points, in coculture of

allogeneic T cells with either DC (circle) or monocytes (square). DC: T cell ratio was 1:100 cells.

Triplicate experiment is representative of more than 10 experiments.



19/23

Figure 2: 2D electrophoresis of whole cell extracts (acidic and neutral proteins)

Whole cell extracts (120 µg protein) prepared from monocytes, immature and mature dendritic cells

were analysed by 2D electrophoresis. The pH gradient in the first dimension ranged from 4 to 8,

thereby separating the acidic and neutral cellular proteins only. The second dimension was a 10% gel,

using a pH 8 gel and  the taurine system. The oxidative stress response proteins identified on the gels

are shown by arrows. The boxed zone is the one shown in figure 4

Figure 3: 2D electrophoresis of whole cell extracts (basic proteins)

The same analysis as in figure 2 was performed, but a pH 4-12 gradient was used in the first

dimension. The second dimension was a 11% gel, using a pH 8.2 gel and  the taurine system. This

allowed to analyze the basic proteins. Silver staining with ammoniacal silver.
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Figure 4: Comigration of Prx2 with monocyte extracts

Only Prx2 zone is shown in this figure. Increasing amounts of chromatographically purified Prx2 [30]

were added to a monocyte extract, and the spiked extracts were separated by two dimensional

electrophoresis using linear 4-8 pH gradient. A) starting monocyte extract. B) monocyte + 10ng Prx2.

C) monocyte + 20ng Prx2. D) monocyte + 50ng Prx2. E) immature dendritic cells. F) mature dendritic

cells. Arrows points out Prx2 spots in the different conditions.

Figure 5: Western blotting of MnSOD

Western blot analysis of MnSOD expression in monocytes, immature monocyte-derived DC (Imm DC)

and LPS- matured monocyte-derived DC (Mat DC). Immunoblots analysis was performed with anti-

MnSOD antibody (#06-984, Cell Signaling) and anti-actin (A-2066, Sigma Aldrich) antibody as

loading control. Data are representative of two experiments.
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Figure 6: Apoptosis in human monocytes and DC untreated or treated with oxLDL.

Apoptosis was quantified by cytofluorimetry after incorporation of propidium iodide.

(A) Monocytes were cultured 24h with or without 75 _g/mL OxLDL.

(B) Monocytes (diamonds), immature monocyte-derived DC (squares) and CD40L-activated mature

DC was cultured 24h with increasing dose of OxLDL.

(C) Mortality of monocytes, immature monocyte-derived DC and CD40L-activated mature DC was

measured after 24h culture in presence (black bars) or in absence (white bars) of 75 _g/mL OxLDL.

Means and SD of three experiments.
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Figure 7: RANKL expression in cocultures of T cells with either monocytes or DC.

RANKL (green) and CD3 (red) stainings of T cells, after 5 days of culture with (A) monocytes, (B)

immature DC and (C) anti-CD3 plus anti-CD28 antibodies. Stars indicate monocytes (A) or DC (B). T

cells were distinguished from other cells based on CD3 expression and Hoechst nuclei staining (not

shown).
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Table 1: quantitative measurements of the oxidative stress response proteins a, b

Monocytes Immature DC CD40L-activated DC

Mn SOD,

basic spot* 1260±80 ppm 2010±120 ppm 4550±200 ppm

Mn SOD,

acidic spot* 250±30 ppm 1020±80 ppm 2450±180 ppm

Prx1† 2150±100 ppm 4960±240 ppm 7440±460 ppm

Prx2 350±30 ppm 680±40 ppm 520±40 ppm

Prx3 40±15 ppm 50±15 ppm 30±10 ppm

Prx4 850±80 ppm 560±50 ppm 520±40 ppm

Prx6 2240±220 ppm 1810±140 ppm 1350±110 ppm

The values are expressed in ppm of the total spot volume, as calculated by the Melanie software. Due

to the precision of the measurement (typically± 10%, but indicated on the table) they have been

rounded (to the closest decennial)

Study of the variations in expression of the antioxidant proteins between the various cellular stages

showed significant variations (p<0.05) except for Prx3 (no variation), Prx4 between immature and

mature DC (p<0.5), and Prx6 between monocytes and immature DC (p<0.1)

*: Mn SOD can be measured on pH 4-12 and on pH 4-8 gradients. The values are those obtained on pH

4-8 gradients

†:  Prx 1 can be measured only on pH 4-12 gradients. All other Prx are measured on pH 4-8 gradients


