1,233 research outputs found

    Albedos and diameters of three Mars Trojan asteroids

    Full text link
    We observed the Mars Trojan asteroids (5261) Eureka and (101429) 1998 VF31 and the candidate Mars Trojan 2001 FR127 at 11.2 and 18.1 microns using Michelle on the Gemini North telescope. We derive diameters of 1.28, 0.78, and <0.52 km, respectively, with corresponding geometric visible albedos of 0.39, 0.32, and >0.14. The albedos for Eureka and 1998 VF31 are consistent with the taxonomic classes and compositions (S(I)/angritic and S(VII)/achrondritic, respectively) and implied histories presented in a companion paper by Rivkin et al. Eureka's surface likely has a relatively high thermal inertia, implying a thin regolith that is consistent with predictions and the small size that we derive.Comment: Icarus, in press. See companion paper 0709.1925 by Rivkin et al; two minor typos fixe

    Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Get PDF
    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations. The action team organized the SKGs into four broad themes: 1) Identify human mission targets; 2) Understand how to work on and interact with the small body surface; 3) Understand the small body environment and its potential risk/benefit to crew, systems, and operational assets; and 4) Understand the small body resource potential. Of these four SKG themes, the first three have significant overlap with planetary defense considerations. The data obtained from investigations of small body physical characteristics under these three themes can be directly applicable to planetary defense initiatives. Conclusions: Missions to investigate small bodies can address small body strategic knowledge gaps and contribute to the overall success for human exploration missions to asteroids and the Martian moons. In addition, such reconnaissance of small bodies can also provide a wealth of information relevant to the science and planetary defense of NEAs

    The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    Get PDF
    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations

    Composition of the L5 Mars Trojans: Neighbors, not Siblings

    Full text link
    Mars is the only terrestrial planet known to have Tro jan (co-orbiting) asteroids, with a confirmed population of at least 4 objects. The origin of these objects is not known; while several have orbits that are stable on solar-system timescales, work by Rivkin et al. (2003) showed they have compositions that suggest separate origins from one another. We have obtained infrared (0.8-2.5 micron) spectroscopy of the two largest L5 Mars Tro jans, and confirm and extend the results of Rivkin et al. (2003). We suggest that the differentiated angrite meteorites are good spectral analogs for 5261 Eureka, the largest Mars Trojan. Meteorite analogs for 101429 1998 VF31 are more varied and include primitive achondrites and mesosiderites.Comment: 14 manuscript pages, 1 table, 6 figures. To be published in Icarus. See companion paper 0709.1921 by Trilling et a

    Data-aware conformance checking with SMT

    Get PDF
    Conformance checking is a key process mining task to confront the normative behavior imposed by a process model with the actual behavior recorded in a log. While this problem has been extensively studied for pure control-flow processes, data-aware conformance checking has received comparatively little attention. In this paper, we tackle the conformance checking problem for the challenging scenario of processes that combine data and control-flow dimensions. Concretely, we adopt the formalism of data Petri nets (DPNs) and show how solid, well-established automated reasoning techniques from the area of Satisfiability Modulo Theories (SMT) can be effectively harnessed to compute conformance metrics and optimal data-aware alignments. To this end, we introduce the CoCoMoT (Computing Conformance Modulo Theories) framework, with a fourfold contribution. First, we show how SMT allows to leverage SAT-based encodings for the pure control-flow setting to the data-aware case. Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering, to speed up the computation of conformance checking outputs. Third, we show how our approach extends seamlessly to the more comprehensive conformance checking artifacts of multi- and anti-alignments. Fourth, we describe a proof-of-concept implementation based on state-of-the-art SMT solvers, and report on experiments. Finally, we discuss how CoCoMoT directly lends itself to further process mining tasks like log analysis by clustering and model repair, and the use of SMT facilitates the support of even richer multi-perspective models, where, for example, more expressive DPN guards languages are considered or generic datatypes (other than integers or reals) are employed

    Continuous Neel to Bloch Transition as Thickness Increases: Statics and Dynamics

    Full text link
    We analyze the properties of Neel and Bloch domain walls as a function of film thickness h, for systems where, in addition to exchange, the dipole-dipole interaction must be included. The Neel to Bloch phase transition is found to be a second order transition at hc, mediated by a single unstable mode that corresponds to oscillatory motion of the domain wall center. A uniform out-of-plane rf-field couples strongly to this critical mode only in the Neel phase. An analytical Landau theory shows that the critical mode frequency varies as the square root of (hc - h) just below the transition, as found numerically.Comment: 4 pages, 4 figure

    Using Dust from Asteroids as Regolith Microsamples

    Get PDF
    Meteorite science is rich with compositional indicators by which we classify parent bodies, but few sample groups are definitively linked with asteroid spectra. More robust links need to be forged between meteorites and their parent bodies to understand the composition, diversity and distribution. A major link can be sample analysis of the parent body material and comparison with meteorite data. Hayabusa, the first sample return mission of the Japanese Aerospace Exploration Agency (JAXA), was developed to rendezvous with and collect samples from asteroid Itokawa and return them to Earth. Thousands of sub-100 micron particles were recovered, apparently introduced during the spacecraft impact into the surface of the asteroid, linking the asteroid Itokawa to LL chondrites [1]. Upcoming missions Hayabusa 2 and OSIRIS-REx will collect more significant sample masses from asteroids. In all these cases, the samples are or will be a collection of regolith particles. Sample return to earth is not the only method for regolith particle analysis. Dust is present around all airless bodies, generated by micrometeorite impact into their airless surfaces, which in turn lofts regolith particles into a "cloud" around the body. The composition, flux, and size-frequency distribution of dust particles can provide significant insight into the geological evolution of airless bodies [2]. For example, the Cassini Cosmic Dust Analyzer (CDA) detected salts in Enceladus' icy plume material, providing evidence for a subsurface ocean in contact with a silicate seafloor [3]. Similar instruments have flown on the Rosetta, LADEE, and Stardust missions. Such an instrument may be of great use in obtaining the elemental, isotopic and mineralogical composition measurement of dust particles originating from asteroids without returning the samples to terrestrial laboratories. We investigated the ability of a limited sample analysis capability using a dust instrument to forge links between asteroid regolith particles and known meteorite groups. We further set limits on the number of individual particles statistically needed to robustly reproduce a bulk composition

    Internal Characteristics of Phobos and Deimos from Spectral Properties and Density: Relationship to Landforms and Comparison with Asteroids

    Get PDF
    Compositional interpretations of new spectral measurements of Phobos and Deimos from Mars Express/OMEGA and MRO/CRISM and density measurements from encounters by multiple spacecraft support refined estimates of the moons' porosity and internal structure. Phobos' estimated macroporosity of 12-20% is consistent with a fractured but coherent interior; Deimos' estimated macroporosity of 23-44% is more consistent with a loosely consolidated interior. These internal differences are reflected in differences in surface morphology: Phobos exhibits a globally coherent pattern of grooves, whereas Deimos has a surface dominated instead by fragmental debris. Comparison with other asteroids .110 km in diameter shows that this correspondence between landforms and inferred internal structure is part of a pervasive pattern: asteroids interpreted to have coherent interiors exhibit pervasive, organized ridge or groove systems, whereas loosely consolidated asteroids have landforms dominated by fragmental debris and/or retain craters >1.3 body radii in diameter suggesting a porous, compressible interior

    Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    Get PDF
    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features
    corecore