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a b s t r a c t

Conformance checking is a key process mining task to confront the normative behavior imposed by
a process model with the actual behavior recorded in a log. While this problem has been extensively
studied for pure control-flow processes, data-aware conformance checking has received comparatively
little attention. In this paper, we tackle the conformance checking problem for the challenging scenario
of processes that combine data and control-flow dimensions. Concretely, we adopt the formalism of
data Petri nets (DPNs) and show how solid, well-established automated reasoning techniques from
the area of Satisfiability Modulo Theories (SMT) can be effectively harnessed to compute conformance
metrics and optimal data-aware alignments. To this end, we introduce the CoCoMoT (Computing
Conformance Modulo Theories) framework, with a fourfold contribution. First, we show how SMT
allows to leverage SAT-based encodings for the pure control-flow setting to the data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving
clustering, to speed up the computation of conformance checking outputs. Third, we show how our
approach extends seamlessly to the more comprehensive conformance checking artifacts of multi- and
anti-alignments. Fourth, we describe a proof-of-concept implementation based on state-of-the-art SMT
solvers, and report on experiments. Finally, we discuss how CoCoMoT directly lends itself to further
process mining tasks like log analysis by clustering and model repair, and the use of SMT facilitates
the support of even richer multi-perspective models, where, for example, more expressive DPN guards
languages are considered or generic datatypes (other than integers or reals) are employed.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In process mining, the task of conformance checking is cru-
ial to test the expected behavior described by a process model
gainst the actual action sequences documented in a log [1].
hile the problem has been thoroughly studied for pure control-

low processes such as classical Petri nets [1,2], the situation
hanges for process models equipped with additional perspec-
ives beyond the control-flow, such as for example the data per-
pective. Notice that, while there are various works that primarily
ocus on the formalization and analysis of data or object-aware
xtensions of Petri nets (e.g., [3–6]), attacking the conformance
hecking problem in the non-classical setting is a very challenging
ask. Indeed, this problem requires to simultaneously consider,
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in a combined way, both the control-flow of the process and
the data that the process manipulates. These two components
are inter-dependent, with the control flow generating data con-
strained by expressive logics, and the data in turn influencing
the control flow. Existing approaches almost exclusively focused
on control-flow alignments and can therefore not be applied
off-the-shelf. To the best of our knowledge, there are in fact
very few existing approaches dealing with the aforementioned
problem, and they concentrate on declarative [7] and procedu-
ral [8,9] multi-perspective process models with rather restrictive
assumptions on the data dimension.

In this paper, we provide a new stepping stone in the line of
research focused on conformance checking of multi-perspective
procedural, Petri net-based process models. Specifically, we con-
sider data Petri nets (DPNs), an extensively studied formalism
within BPM [10–12] and process mining [8,9,13], which allows
for a succinct but flexible and expressive model presentation.
For this setting, we introduce a novel conformance checking
framework called CoCoMoT (Computing Conformance Modulo
Theories). The main feature of CoCoMoT is that, instead of provid-
ing ad-hoc algorithmic techniques for checking conformance, it
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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rovides an overarching approach based on the theory and prac-
ice of Satisfiability Modulo Theories (SMT) [14]: SMT provides
very expressive and flexible framework supporting efficient

lgorithmic techniques that are exploited by state-of-the-art and
ighly performing solvers, and that can deal with a wide range of
ifferent datatypes, making them particularly suitable for being
pplied in a data-aware context. Respective SMT solvers [15,16]
re mature, efficient, and highly optimized tools that we use in
ur implementation. By relying on an SMT backend, we exploit
ell-established automated reasoning techniques that can sup-
ort data and operations from a variety of theories, restricting
he data dimension as little as possible.

On top of this basis, we provide a fourfold contribution. First,
e show that conformance checking of DPNs with arithmetic
onstraints can be reduced to satisfiability of SMT formulas over
he theory of linear integer and rational arithmetic. While our
pproach is inspired by the use of SAT solvers for a similar
urpose [17,18], the use of SMT not only allows us to account for
ata manipulating guards, but also capture unbounded nets. Our
oCoMoT approach results in a conformance checking procedure
unning in NP, which we prove optimal for the problem, in
ontrast to earlier conformance checking approaches for DPNs
unning in exponential time [8,9]. We also formally demonstrate
he correctness of our approach and provide an extensive discus-
ion on how various SMT theories can be used in order to extend
he theoretical setting of our conformance checking framework.

Second, we show how to simplify and optimize conformance
hecking by introducing a preprocessing, trace clustering tech-
ique for DPNs that groups together traces that have the same
inimal alignment cost. Clustering allows one to compute con-

ormance metrics by just computing alignments for one represen-
ative per cluster, and to obtain alignments for other members
f the same cluster from a simple adjustment of the alignment
omputed for the representative trace. Besides the general noti-
n of clustering, we then propose a concrete clustering strat-
gy grounded in data abstraction for variable-to-constant con-
traints, which are often present in automatically mined nets,
nd show how this strategy leads to a significant speedup in our
xperiments.
Third, we show how due to its flexibility, our approach can be

eamlessly extended to further conformance checking artifacts,
amely multi- and anti-alignments.
Fourth, we report on a proof-of-concept implementation of

oCoMoT that does not only support plain conformance checking,
ut also lends itself to performing search of multi- and anti-
lignments. We discuss optimizations and show the feasibility of
he approach with an experimental evaluation on three different
enchmark sets available in the literature.
This article extends the conference version of this paper [19]

n several ways:

(i) we provide complete proofs of all formal results, including
the correctness of the decoding, the complexity result, and
correctness of clustering;

(ii) we lay out the extension of our approach to multi- and
anti-alignments, which are now also covered by our im-
plementation;

(iii) we extended the experimental section, to evaluate in de-
tail the performance of our implementation on different
data sets, assess the scalability of our approach, and com-
pare with the other conformance checking tool for DPNs
proposed in [8,9];

(iv) we devise a concrete way to compute an upper bound
to the length of the alignment – a crucial ingredient to
our method which was so far determined by heuristics in
related SAT-based approaches – and formally demonstrate
that this computation scheme comes with a correctness
guarantee;
2

(v) we elaborate the decoding phase of our approach, specify-
ing how to construct an optimal alignment from the output
of the SMT solver; and

(vi) we include a detailed section about related work.

The remainder of the paper is structured as follows. In
Section 2 we recall the relevant basics about data Petri nets,
alignments, cost functions and distances, and define the confor-
mance checking problem. This paves the way to present our SMT
encoding (together with related theoretical results) in Section 3.
Our clustering technique that serves as a preprocessor for con-
formance checking is the topic of Section 4. The treatment of
multi- and anti-alignments is discussed in Section 5. In Section 6
we describe our implementation and the conducted experiments.
Related work is discussed in Section 7. In Section 8 we conclude.

2. Data-aware conformance checking

In this section, we present formal foundations of the data-
aware conformance checking framework used in this paper. First,
in Section 2.1 we provide preliminaries on data Petri nets (DPNs)
and their execution semantics. Then we introduce the confor-
mance checking problem and discuss a distance-based measure
we use for computing optimal alignments. Finally, we briefly
introduce satisfiability modulo theories (SMT) — the main ma-
chinery behind our approach.

2.1. Data Petri nets

We use Data Petri nets (DPNs) for modeling multi-perspective
processes, adopting a formalization as in [8,9].

To capture the data types of variables that are manipulated by
a process, we fix a set of (process variable) types Σ = {bool, int,
rat, string} with associated domains: D(bool) = B, the boole-
ans; D(int) = Z, the integers; D(rat) = Q, the rational
numbers; and D(string) = S, the strings over some fixed
alphabet. A set of process variables V is typed if there is a function
type : V → Σ assigning a type to each variable in V . For a set of
variables V , we consider two disjoint sets of annotated variables
V r

= {vr
| v ∈ V } and Vw

= {vw
| v ∈ V } to be respectively

read and written by process activities, as explained below, and
we assume type(vr ) = type(vw) = type(v) for every v ∈ V .
iven V and a type σ ∈ Σ (for example, σ can be the integer
ype), Vσ denotes the subset of annotated variables in V r

∪ Vw of
ype σ . To manipulate typed variables, we consider the following
xpressions:

efinition 1. For a set of variables V , constraint c and expres-
ions s, n, and r of types string, int, and rat are defined by
he following grammar:

c ::= vb | b | n ≥ n | r ≥ r | r > r | s = s | c ∧ c | ¬c s ::= vs | t

::= vz | z | n + n | −n r ::= vr | q | r + r | −r

here vb ∈ Vbool, b∈B, vs ∈ Vstring, t ∈ S, vz ∈ Vint, z ∈Z, vr∈Vrat,
nd q∈Q.

We denote the set of all constraints over variables V by C(V ),
and the set of variables that appear in a constraint c is denoted
by Var(c), hence Var(c) ⊆ Vw

∪ V r . Standard equivalences apply,
hence disjunction (i.e., ∨) of constraints can be used, as well as
comparisons ̸=, <, ≤ on integer and rational expressions, though
xpressions of types bool and string only support (in)equality

comparisons. The constraints defined in Definition 1 serve to
express conditions on the values of variables that are read and
written during the execution of activities in the process. Intu-
itively, a constraint (xr > yr ) for x, y ∈ V states that the current
alue of variable x is greater than the current value of y. Similarly,
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xw > yr + 1) ∧ (xw < zr ) requires that the new value given to
x (i.e., assigned to x as a result of executing the activity to which
this constraint is attached) is greater than the current value of
y plus 1, and smaller than z. In general, given a constraint c as
above, we refer to the annotated variables in V r and Vw that
appear in c as the read and written variables, respectively.

Definition 2 (DPN). A Petri net with data (DPN) is given by a tuple
N = (P, T , F , ℓ, A, V , guard), where:

• (P, T , F , ℓ) is a Petri net with two non-empty disjoint sets of
places P and transitions T , a flow relation F : (P × T ) ∪ (T ×

P) → N and a labeling function ℓ : T → A ∪ {τ }, where A
is a finite set of activity labels and τ is a special symbol for
silent transitions;

• V is a typed set of process variables; and
• guard : T → C(V ) assigns executability constraints.

As customary, given x ∈ P ∪ T , we use •x := {y | F (y, x) > 0}
to denote the preset of x and x•

:= {y | F (x, y) > 0} to denote the
postset of x. In order to refer to the variables read and written
by a transition t , we use the notations read(t) = {v | vr

∈

Var(guard(t))} and write(t) = {v | vw
∈ Var(guard(t))}. Finally,

GN is the set of all the guards appearing in N .
Hereinafter, we follow an important assumption that forbids

silent transitions to modify process variables. Formally, for every
t ∈ T s.t. ℓ(t) = τ , it holds that write(t) = ∅. This assumption
is very natural as it prohibits process models to perform any
adversarial, unobservable changes on the process data that also
cannot be aligned with data in logs.

From now on, we assume that V is the set of process variables.
To assign values to variables, we use assignments. A state variable
assignment is a function α : V →

⋃
v∈V D(type(v)) such that

α(v) ∈ D(type(v)) for all v ∈ V : notice that dom(α) = V where
dom denotes the domain of functions. State variable assignments
are used to specify the current value of process variables. Simi-
larly, a transition variable assignment is a partial function β with
dom(β) ⊆ V r

∪ Vw that assigns a value to annotated variables,
namely β(x) ∈ D(type(x)), with x ∈ V r

∪ Vw . Transition variable
assignments are used to specify how variables change as the
result of activity executions (cf. Definition 3).

A state in a DPN N is a pair (M, α) constituted by a marking
M : P → N for the underlying Petri net (P, T , F , ℓ), plus a state
variable assignment α. Therefore, a state simultaneously accounts
for the control flow progress and for the current values of all
variables in V , as specified by α. For ease of notation, we denote
with [pi11 , . . . , pinn ] a concrete multiset representing a marking in
which each place pk contains ik tokens.

We now define when a Petri net transition may fire from a
given state.

Definition 3 (Transition firing). A transition t ∈ T is enabled in
state (M, α) if there exists a transition variable assignment β such
that:

• dom(β) = Var(guard(t)): β is defined for the variables in
the guard;

• β(vr ) = α(v) for every v ∈ read(t), i.e., β is as α for read
variables;

• β |H guard(t), i.e., β satisfies the guard; and
• M(p) ≥ F (p, t) for every p ∈

•t .

An enabled transition may fire, producing a new state (M ′, α′), s.t.
M ′(p) = M(p)−F (p, t)+F (t, p) for every p ∈ P , and α′(v) = β(vw)
for every v ∈ write(t), and α′(v) = α(v) for every v ̸∈ write(t). A
pair (t, β) as above is called (valid) transition firing, and we denote

(t,β)
′ ′
its firing by (M, α)−−→(M , α ). f

3

Given N , we fix one state (MI , α0) as initial, where MI is the
initial marking of the underlying Petri net (P, T , F , ℓ) and α0
specifies the initial value of all variables in V . Similarly, we denote
the final marking as MF , and call a state of the form (MF , αF ) for
some αF final.

We say that a state (M, α) is reachable in a DPN iff there exists
a sequence of transition firings f = ⟨f1, . . . , fn⟩ = ⟨(t1, β1), . . . ,
(tn, βn)⟩, s.t. (MI , α0)

(t1,β1)
−−−→(M1, α1)

(t2,β2)
−−−→ . . .

(tn,βn)
−−−→(Mn, αn) = (M,

α), denoted as (MI , α0)
f

−→(M, α). Moreover, f is called a (valid)
process run of N if (MI , α0)

f
−→(MF , αF ) for some αF , so that the run

starts in the initial state and ends in a final state. Similar to [8], we
restrict our setting to DPNs that are relaxed data sound, i.e., where
at least one final state is reachable.

We denote the set of valid transition firings of a DPN N as
F(N ), and the set of process runs as Runs(N ).

Example 1. Let N be as shown where the marking [p0] is initial
and [p3] final:
p0

a

xw
≥ 0 p1

b

yw > 0 p2
τ

xr ≤ 3 ∧ yr < 4 p3
d

yw
= yr + 1

τ

xr ≤ 3

For the initial assignment α0 = {x ↦→ 0, y ↦→ 0}, the set Runs(N )
contains e.g. f1 = ⟨(a, {xw

↦→ 2}), (b, {yw
↦→ 1}), (τ , {xr ↦→

2, yr ↦→ 1})⟩ as well as f2 = ⟨(a, {xw
↦→ 1}), (τ , {xr ↦→

1}), (d, {yw
↦→ 1})⟩.

2.2. Event logs, alignments and distance-based cost functions

Given an arbitrary set A of activity labels and a set V of
variables, an event is a pair (b, α), where b ∈ A and α is a so-called
event variable assignment, that is, a function that associates values
to variables in V . Differently from state variable assignments, an
event variable assignment can be a partial function.

Definition 4 (Log trace, event log). Given a set E of events, a log
trace e ∈ E∗ is a sequence of events in E and an event log L ∈

M(E∗) is a multiset of log traces from E , where M(E∗) denotes
the set of all multisets over E∗.

We focus on a conformance checking procedure that aims at
constructing an alignment of a given log trace e w.r.t. a process
model (i.e., a DPN N ), by matching events in the log trace against
transition firings in the process runs of N . However, when con-
structing an alignment, not every event can always be put in
correspondence with a transition firing, and vice versa. Therefore,
we introduce a special ‘‘skip" symbol ≫ and the extended set of
events E≫

= E∪{≫} and, given N , the extended set of transition
firings F≫

= F(N ) ∪ {≫}.

Definition 5 (Move). Given a DPN N and a set of events E , a pair
(e, f ) ∈ E≫

× F≫
\ {(≫, ≫)} is called move.1 A move (e, f ) is

called:

• log move if e ∈ E and f = ≫;
• model move if e = ≫ and f ∈ F(N );
• synchronous move if (e, f ) ∈ E × F(N ).

Let MovesN be the set of all such moves. We now show how
oves can be used to define alignments of log traces.

1 In contrast to [8], we do not distinguish between synchronous moves with
orrect and incorrect write operations, and defer this differentiation to the cost
unction.
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For a sequence of moves γ = ⟨(e1, f1), . . . , (en, fn)⟩, the log
projection γ |L of γ is the longest subsequence e′

= ⟨e′

1, . . . , e
′

i⟩

of e = ⟨e1, . . . , en⟩ such that e′
∈ E∗, i.e., e′ is obtained from e by

omitting all ≫ symbols. Similarly, the model projection γ |M of γ is
the longest subsequence f′ = ⟨f ′

1, . . . , f
′

j ⟩ of f = ⟨f1, . . . , fn⟩ such
that f′ ∈ F(N )∗, i.e., f′ is obtained from f by projecting away all
≫ symbols. We also write x|j, 0 ≤ j ≤ n, for a prefix of length j of
a sequence x = ⟨x1, . . . , xn⟩, and denote an empty prefix (i.e., for
j = 0) with ϵ.

Definition 6 (Alignment). Given a DPN N , a sequence of moves γ

is an alignment of a log trace e if γ |L = e, and it is complete if
|M ∈ Runs(N ).

Notice that in the case of complete alignments, it is implied
hat the final marking of N is reached.

xample 2. The sequences γ1, γ2 and γ3 below are complete
lignments of the log trace e = ⟨(a, {x ↦→ 2}), (b, {y ↦→ 1})⟩ w.r.t.
he DPN from Example 1:

1 :
a {x ↦→ 2}
a {xw

↦→ 2}
b {y ↦→ 1}
b {yw

↦→ 1}
≫

τ
γ2 :

a {x ↦→ 2}
a {xw

↦→ 3}
≫

τ

b {y ↦→ 1}
≫

γ3 :
a {x ↦→ 2}

≫

b {y ↦→ 1}
≫

≫

a {xw
↦→ 3}

≫

τ

Here, alignments are depicted as tables where the cells in the
op row correspond to trace events, and cells in the bottom row
orrespond to transitions in the model run. Cells of trace events
ontain activity labels and event variable assignments; in cells
or model transitions we list the written variables (instead of the
ntire transition variable assignment, for the sake of readability).

For a process run f, we denote by Align(f, e) the set of align-
ents γ such that γ |L = e and γ |M = f. Moreover, Align(N , e) is

he set of complete alignments for a log trace e w.r.t. a DPN N . A
ost function is a mapping κ :MovesN → R≥0 that assigns a cost
o every move. It is naturally extended to alignments as follows.

efinition 7 (Alignment cost). Let N be a DPN and γ a complete
lignment of a log trace e with respect to N , i.e., γ ∈ Align(N , e).
or γ = ⟨(e1, f1), . . . , (en, fn)⟩, the cost of γ is given by κ(γ ) =
n
i=1 κ(ei, fi).

Thus, the cost of an alignment is given by the sum of the costs
f its moves. This allows us to define the notion of an optimal
lignment for a log trace with respect to a DPN and a given cost
unction:

efinition 8 (Optimal alignment). A complete alignment γ ∈

lign(N , e) for a log trace e with respect to a DPN N is optimal if
(γ ) is minimal among all complete alignments for e, i.e., there
s no γ ′

∈ Align(N , e) s.t. κ(γ ′) < κ(γ ).

The cost of an optimal alignment for e with respect to N is
enoted by κ

opt
N (e). Given N , we denote the set of optimal align-

ents for e as Alignopt (N , e). Indeed, optimal alignments need
ot be unique, as illustrated in Example 3 below after defining
pecific cost functions.
Various metrics to evaluate process models against observed

ehaviors in the log are conceivable. In this work, we use a
istance metric that guides the alignment procedure so that the
atter finds a model run that is as close as possible to the observed
race. To this end, we formalize the distance between a log trace
nd a process run as follows:

efinition 9 (Distance). Given a log trace e ∈ E∗ and a process
un f ∈ Runs(N ), the distance between e and f is defined as

istκ (e, f) = minγ∈Align(f,e) κ(γ ).

4

In other words, the distance between e and f is the minimal
number of edits needed to align the process model behavior with
the one observed in the log. It is easy to see that optimal align-
ments can be formalized using the notion of distance: indeed, the
optimal alignment cost for e is given by the minimum distance
ist(e, f) between e and f, for all f ∈ Runs(N ).
In order to effectively compute an optimal alignment, we will

se a variant of the well-known notion of edit distance (also
nown as Levenshtein distance), as is standard in conformance
hecking [2]. This allows us in particular to adopt a similar SAT-
ased encoding as used in the literature [20]. However, we adopt
more general version of the edit distance that can be used
ot only to represent the usual Levenshtein distance, but also
ts variants such as the discounted cost function discussed in [17]
nd distance functions previously used for multi-perspective con-
ormance checking [8,9] (the latter we will call standard cost
unction, as discussed below).

Our cost measure is parameterized by three penalty functions:

L : E → N PM :F(N ) → N P= : E × F(N ) → N

espectively called the log move penalty, model move penalty,
nd synchronous move penalty functions (cf. Section 2.2). These
unctions naturally give rise to a cost function κdist :MovesN →

≥0, by using PL for log moves, PM for model moves, and P= for
ynchronous moves. In this case we say that κdist is a cost function
hat has parameters PL, PM , and P=.

efinition 10. A cost function κ is distance-based if it is defined
s κ(γ ) =

∑n
i=1 κdist (ei, fi) for some κdist having parameters PL,

M , and P=, for all γ = ⟨(e1, f1), . . . , (en, fn)⟩.

In the sequel, we consider such distance-based cost functions.

efinition 11 (Generalized edit distance).
Given a DPN N , let e = ⟨e1, . . . , em⟩ be a log trace and

= ⟨f1, . . . , fn⟩ a process run of N . For all i and j, 0≤ i≤m and
≤ j ≤ n, the edit distance δ(e|i, f|j) is recursively defined as

ollows:

δ(ϵ, ϵ) = 0
δ(e|i+1, ϵ) = PL(ei+1) + δ(e|i, ϵ)
δ(ϵ, f|j+1) = PM (fj+1) + δ(ϵ, f|j)

(e|i+1, f|j+1) = min

{ P=(ei+1, fj+1) + δ(e|i, f|j)
PL(ei+1) + δ(e|i, f|j+1)
PM (fj+1) + δ(e|i+1, f|j)

In fact, given a log trace e and a process run f, the edit distance
(e, f) is exactly the distance dist(e, f) from Definition 9, taking
dist as cost function, as stated next:

emma 1. A distance-based cost function κ satisfies distκ (e, f) =

(e, f).

This can be shown using known properties of the edit dis-
ance [17,21], and for our setting we will later on show optimality
irectly.
We next demonstrate how by fixing the functional parameters

=, PL, and PM , one can obtain concrete, known distance-based
ost functions are obtained.
Standard cost function. As defined in [8, Ex. 2] and [9, Def.

.5], the following standard cost function is a ‘‘default’’ choice
hat can be used, for example, for providing initial assessments
n the log conformance. To this end, we instantiate the distance
unction from Definition 10 as follows:

PL(b, α) = 1

PM (t, β) =

{
0, if ℓ(t) = τ
|write(t)| + 1, otherwise
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=((b, α), (t, β)) =

{
|{v ∈ dom(α) | α(v) ̸= β(vw)}|, if ℓ(t) = b
∞, otherwise

Example 3. Consider alignments γ1, γ2, and γ3 from Example 2.
Using the standard cost function κ , we get the following:

• κ(γ1) = 0, since PM does not penalize moves with silent
transitions;

• κ(γ2) = 2, because P= penalizes with 1 synchronous moves
with incorrect write operations and PL always returns 1 for
log moves (as in the previous case, model moves with silent
transitions are not penalized);

• κ(γ3) = 4, since, as in the previous case, we get 1 for each
of the log moves and no penalty for the silent model move,
but we get 2 for a non-silent model move that writes one
variable.

However, optimal alignments need not be unique. The trace e =

⟨(b, {y ↦→ 1})⟩ admits the two alignments
≫

a {xw
↦→ 1}

b {y ↦→ 1}
b {yw

↦→ 1}
≫

τ
and ≫

a {xw
↦→ 3}

b {y ↦→ 1}
b {yw

↦→ 1}
≫

τ

which are both optimal with cost 2.

Levenshtein distance. Another natural way of estimating how
‘far’’ two sequences are from each other uses the plain Leven-
htein distance, computing the minimum number of edits needed
o transform one sequence into another. This measure can be
btained by the following edit distance instantiation:

PL(b, α) = 1
PM (t, β) = 1

=((b, α), (t, β)) =

{
0, if ℓ(t) = b
∞, otherwise

Note that this measure is ‘‘data-agnostic’’ as it ignores transition
variable assignments.

Discounted cost function. Following the recent proposal in
[17], we slightly modify the PL and PM functions, and extend the
bove Levenshtein distance with an ability to penalize more those
og and model moves that occur at early stages of the alignment
onstruction:

PL(b, α, e) = 1 + θ−πL(e,b)

M (t, β, f) = 1 + θ−πM (f,t)

ere, θ ∈ R≥1 is a discount parameter, and πL(e, b) and πM (f, t)
unctions that provide positions at which b and t respectively
ccur in e and f. In [17] it is suggested that with θ = 2 the
iscount becomes severe enough, as the edit at a given position
an cost more than the sum of all the following edits.

.3. Satisfiability Modulo Theories (SMT)

Here, we introduce the main technical machinery exploited
n this paper: SMT solving. In order to describe it formally, we
ssume the usual syntactic (e.g., signature, variable, term, atom,
iteral, and formula) and semantic (e.g., structure, truth, satis-
iability, and validity) notions of first-order logic. The equality
ymbol = is always included in all signatures.
Formally, according to the current practice in the SMT litera-

ure [14,22], a theory T is a pair (Σ, Z), where Σ is a signature
nd Z is a class of Σ-structures; the structures in Z are the models
f T . A Σ-formula φ is T -satisfiable if there exists a Σ-structure

in Z such that φ is true in M under a suitable assignment
to the free variables of φ (in symbols, (M, a) |H φ); it is
-valid (in symbols, T ⊢ φ) if its negation is T -unsatisfiable.
wo formulae φ and φ are T -equivalent if φ ↔ φ is
1 2 1 2 f

5

-valid. The problem of (quantifier-free) satisfiability modulo the
heory T (SMT (T )) amounts to establishing the T -satisfiability of
uantifier-free Σ-formulae.
Intuitively, the Satisfiability Modulo Theories (SMT) prob-

em [14] is an extension of the classic propositional satisfiability
SAT) problem. The SAT problem asks, given a propositional
ormula ϕ, to either find a satisfying assignment ν under which
evaluates to true, or detect that ϕ is unsatisfiable. For instance,
iven the formula (p ∨ q) ∧ (¬p ∨ r) ∧ (¬r ∨ ¬q), a satisfying
ssignment is ν(p) = ν(r) = ⊤, ν(q) = ⊥, where, as customary
n first-order logic, ⊤ stands for the truth value ‘true’ and ⊥

tands for the truth value ‘false’. The SMT problem extends SAT
y asking to decide satisfiability of a formula ϕ whose language
xtends propositional formulas by constants and operators from
ne or more first-order theories T . There exists a plethora of
olvers, called SMT solvers, able to solve the SMT problem: they
xtend SAT solvers with specific decision procedures customized
or the specific theories involved. SMT solvers are useful both for
omputer-aided verification, to prove the correctness of software
rograms against some property of interest, and for synthesis, to
enerate candidate program fragments. Examples of well-studied
MT theories are the theory of uninterpreted functions EUF , the
heory of bitvectors BV and the theory of arrays AX [14,22]. All
hese theories are usually employed in applications to program
erification. For this paper, only the theories of linear integer and
ational arithmetic (LIA and LQA) are relevant. For instance, the
MT formula a > 1 ∧ (a + b = 10 ∨ a − b = 20) ∧ p, where a, b
re integer and p is a propositional variable, is satisfiable by the
ssignment ν such that ν(a) = ν(b) = 5 and ν(p) = ⊤.
Another important problem studied in the area of SMT and

elevant to this paper is the one of Optimization Modulo Theories
OMT) [23]. The OMT problem asks, given a formula ϕ, to find a
atisfying assignment of ϕ that minimizes or maximizes a given
bjective expression. SMT-LIB [22] is an international initiative
iming at providing an extensive on-line library of benchmarks
nd promoting the adoption of common languages and interfaces
or SMT solvers. In this paper, we make use of the SMT solvers
ices 2 [16] and Z3 [15].

. Conformance checking via SMT

This section describes the core of our approach, by presenting
he encoding building blocks used in the CoCoMoT framework.
e first explain how a bound on the length of a run in an
ptimal alignment can be computed ( Section 3.1). This bound is
hen used as the basis SMT-based encoding that we introduce in
ection 3.2 to solve the problem of finding optimal alignments. In
ection 3.3 we prove correctness, and in Section 3.4 we analyze
he computational complexity.

.1. Length bound on optimal alignment

Given a DPN N and a log trace e, our approach aims to find
n optimal alignment by constructing a symbolic representa-
ion both of a process run and an alignment, and subsequently
‘grounding’’ that representation to a concrete process run f and
n alignment γ , using an SMT solver. Since the symbolic repre-
entation is encoded using a finite set of variables, we need to
ix upfront an upper bound on the optimal alignment size. This,
n turn, amounts to fixing an upper bound nf on the symbolic
epresentation of the process run (that is, its length), so that there
s some γ ∈ Alignopt (N , e) for which nf ≥ γ |M . Notice that
uch an upper bound was already required in earlier SAT-based
pproaches [17,20].
In general, the above upper bound strictly depends on the cost

unction of choice. Hereinafter, for simplicity, we consider the
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tandard cost function from Section 2.2. But even for this cost
unction, computation of a suitable upper bound is considerably
ore intricate in the presence of guards that manipulate data. We
laborate on this in the next example.

xample 4. Consider the following DPN N :
p0

a b

t1 t2

xr = n xw
= xr + 1

The initial and final markings are such that MI = MF = [p0],
nd V = {x}, with α0(x) = 0 being the initial assignment. Let

= ⟨e, . . . , e⟩, with e = (a, ∅) and |e| = m. Consider the
ollowing two alignments:2

1 =
a
≫

. . .
a
≫

γ2 =
≫

b {xw
↦→ 1} . . .

≫

b {xw
↦→ n}

a
a . . .

a
a

For γ1, we have that κ(γ1) = |e| = m, that is, the cost amounts
o the length of the log trace. In γ2, every b-model move has cost
as only one variable is written, while the synchronous moves
ave cost 0. Thus, κ(γ2) = 2n. From that we can deduce that, if
= |e| < 2n, then γ1 is optimal, while otherwise γ2 will be the

ptimal alignment (as its cost will remain unchanged due to the
uard of t1). In fact, in the latter case, the length of the process
un associated with the optimal alignment is n + m.

In the following example we demonstrate how silent transi-
ions can further complicate the computation of the upper bound.

xample 5. Consider the following net N ′, a variant of the net
rom Example 4:

t2
b

t1
a

p0

xr = n xw
= xr + 1

Here, both the left and right cycles consist of k-silent tran-
itions (depicted in gray). For e as in Example 4, γ1 is still a
alid alignment. Now consider a variant of alignment γ2, denoted
′

2, in which every model move and synchronous move in γ2 is
ombined with k silent transitions. As silent transitions are not
enalized by the standard cost function, κ(γ ′

2) = 2n. Thus, if
′

2 is optimal, the length of the respective process run γ ′

2|M is
n+m) ·(k+1). Note that even without data manipulating guards,
he length of the process run would be m · (k + 1).

These examples show that the length of a process run f as-
ociated with an optimal alignment may not only depend on
he length of the log trace and the length of paths on the net
raph, but also the data manipulating guards. However, we next
how that an upper bound for the length of f exists whenever
he standard cost function is used. Notice that a similar reasoning
pplies when using the Levenshtein distance.

emma 2. Let N be a DPN, ⟨f1, . . . , fn⟩ be a process run of N
uch that c =

∑n
j=1 PM (fj) is minimal, and k the length of the

ongest acyclic path of silent transitions in N . Then there is some
∈ Alignopt (N , e) for e w.r.t. the standard cost function such that

γ |M | ≤ (2|e| + c + 1) · k.

roof. Consider γ0 = ⟨(e1, ≫), . . . , (em, ≫), (≫, f1), . . . (≫, fn)⟩,
hich is a valid alignment for e = ⟨e1, . . . , em⟩ that satisfies
(γ0) = m + c. By optimality, κ(γ ) ≤ κ(γ0) must hold. Observe
hat γ can have at most |e| synchronous moves, with the best
ase cost of 0 (when all write operations match), so that γ |M has

2 Both in γ and γ moves containing label a appear m times.
1 2

6

the same number of corresponding transitions. Since every model
move with a non-silent transition has at least cost 1, γ |M can
have at most m + c non-silent transitions (otherwise, we would
have κ(γ ) > κ(γ0)). Thus γ |M has at most 2m + c non-silent
ransitions used in synchronous and model moves of γ . However,
here may exist a process run composed of all the transitions
rom ⟨f1, . . . , fn⟩ and silent transitions appearing between every
ne of these, as well as before and afterwards such that: (1) the
rder of firing of non-silent transition is the same as in the run
rom above; (2) the cost of the eventual alignment is not affected
y the silent transitions. This is similar to the case illustrated in
xample 5. Thus, since silent transitions do not write variables,
he number of such silent transitions can be bound by the length
f the longest acyclic path constructed of silent transitions in N .
ike that, we obtain that the length of γ |M is at most (2m+c+1)·k.

For safe nets, shortest paths are known to be computable in
olynomial time [24]. The quantity c in Lemma 2 corresponds
o a weighted shortest path problem, and is hence computable
ccordingly. In fact the bound proven in Lemma 2 is conservative
nd in practice often unnecessarily high. E.g., optimal alignments
eed not contain silent transitions at all, but theymay be required
o get an optimal cost alignment (cf. Example 5). However, the
rucial point here is that a computable upper bound exists. More-
ver, the bound of Lemma 2 will exclude optimal alignments with
oops composed of silent transitions only. This is not a problem
ince another optimal alignment without such loops exists whose
ength is within the bounds.

.2. Encoding

We now describe the building blocks of our encoding. It is
nspired by the SAT-based approach presented in [17,20], but
ignificantly differs from it as it works also for nets with arc mul-
iplicities and unbounded nets, beyond the safe case considered
n [17].

Given a log trace e = ⟨e1, . . . , em⟩ and a DPN N with ini-
ial marking MI , initial state variable assignment α0, and final
arking MF , we want to construct an optimal alignment γ ∈

Alignopt (N , e). To that end, we assume throughout this section
that the length of the process run associated with γ is bounded by
some number n. In the interest of a more succinct presentation,
e also assume that the given netN has a silentwait transition in
he final marking, as also done in [20,25]. However, we comment
n the end of this section that our approach can also be adapted
o the case where this is not possible because the final marking
s empty (cf. Remark 1).

Our approach comprises the following four steps: (1) rep-
esent the alignment symbolically by a set of SMT variables,
2) set up constraints Φ that symbolically express optimality of
his alignment, (3) solve the constraints Φ to obtain a satisfying
ssignment ν, and (4) decode an optimal alignment γ from ν. We
ext elaborate these steps in detail. An overview over the SMT
ariables and other notational shorthands related to the encoding
re provided in Table 1.
(1) Alignment representation. We use the following SMT

ariables:

(a) transition step variables Si for 1≤ i≤ n of type integer; if
T = {t1, . . . , t|T |} then it is ensured that 1≤ Si ≤ |T |, with
the semantics that Si is assigned j iff the ith transition in
the process run is tj;

(b) marking variables Mi,p of type integer for all i, p with 0 ≤

i ≤ n and p ∈ P , where Mi,p is assigned k iff there are k
tokens in place p at instant i;

(c) data variables Xi,v for all v ∈ V and i, 0 ≤ i ≤ n; the type of
these variables depends on v, with the semantics that X
i,v
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Table 1
Notation used to describe the SMT encoding. Here, m is a log trace length and n is the (maximal) length of the
process run associated with a computed alignment γ .
symbol description

Si transition step variables encoding the process run (1 ≤ i ≤ n)
Mi,p marking variables (1 ≤ i ≤ n and p ∈ P)
Xi,v data variables encoding process variable assignments (0 ≤ i ≤ n and v ∈ V )
di,j distance variables encoding the alignment cost of the prefixes e|i and f|j (0 ≤ i ≤ m and 0 ≤ j ≤ n)
tids(a) the set of transition indices corresponding to label a
lab(S, a) a formula encoding that the value assigned to S corresponds to a transition labeled with a
ν satisfying variable assignment to all the variables in the SMT encoding
fν process run decoding for a satisfying assignment ν
I
o

s

ϕ

E
E
f
l
W
r
t
f
1
f

M

M

1

is assigned r iff the value of v at instant i is r; we also write
Xi for (Xi,v1 , . . . , Xi,vk );

(d) distance variables di,j of type integer for 0 ≤ i ≤ m and
0 ≤ j ≤ n, where di,j is to represent the alignment cost of
the prefix e|i of the log trace e, and prefix f|j of the (yet to
be determined) run f.

Note that variables (a)–(c) comprise all information required
o capture a process run with n steps, which will make up the
odel projection of the alignment γ , while the distance variables

(d) will be used to encode the alignment.
(2) Encoding. To ensure that the values of variables corre-

spond to a valid run, we assert the following constraints:

• The initial marking MI and the initial assignment α0 are
respected:⋀
p∈P

M0,p = MI (p) ∧

⋀
v∈V

X0,v = α0(v) (ϕinit )

• The final marking MF is respected:⋀
p∈P

Mn,p = MF (p) (ϕfinal)

• Transitions correspond to transition firings in the DPN:⋀
1≤i≤n

1 ≤ Si ≤ |T | (ϕtrans)

• Transitions are enabled when they fire:⋀
1≤i≤n

⋀
1≤j≤|T |

(Si = j) →

⋀
p∈ •tj

Mi−1,p ≥ |
•tj|p (ϕenabled)

where |
•tj|p denotes the multiplicity of p in the multiset •tj.

• We encode the token game:⋀
1≤i≤n

⋀
1≤j≤|T |

(Si = j) →

⋀
p∈ P

Mi,p − Mi−1,p = |tj•|p − |
•tj|p

(ϕmark)

where |tj•|p is the multiplicity of p in the multiset tj•.
• The transitions satisfy the constraints on data:⋀

1≤i<n

⋀
1≤j≤|T |

(Si = j) → guard(tj)χ ∧

⋀
v ̸∈write(tj)

Xi−1,v = Xi,v

(ϕdata)

where the substitution χ uniformly replaces V r by Xi−1 and
Vw by Xi.

• The encoding of the edit distance depends on the penalty
functions P=, PM , and PL. We illustrate here the formulae ob-
tained for the standard cost function in Section 2.2. First, for
T = {t1, . . . , t|T |} and a ∈ A, we write tids(a) = {i | ℓ(ti)= a}
for the set of transition indices corresponding to label a;
and for a transition variable S, lab(S, a) :=

⋁
S= k
k∈tids(a)

7

expresses that the value assigned to S corresponds to a tran-
sition labeled a. Given a log trace e = (b1, α1), . . . , (bm, αm),
let the expressions [PL], [PM ]j, and [P=]i,j be defined as
follows, for all i and j:

[PL] = 1

[PM ]j = ite(Sj = 1, cw(t1), . . . ite(Sj = |T | − 1, cw(t|T |−1), cw(t|T |)) . . . )

[P=]i,j = ite(lab(Sj, bi),
∑

v∈write(bi)

ite(αi(v)= Xi,v, 0, 1), ∞)

where the write cost cw(t) of transition t ∈ T is 0 if ℓ(t) =

τ , or |write(t)| + 1 otherwise, and ite is the if-then-else
operator. It is then straightforward to encode the data edit
distance by combining all equations in Definition 9:

d0,0 = 0 di+1,0 = [PL] + di,0 d0,j+1 = [PM ]j+1 + d0,j

di+1,j+1 = min([P=]i+1,j+1 + di,j, [PL] + di,j+1, [PM ]j+1 + di+1,j)

(ϕδ)

n this way, we will see that dm,n gets assigned the cost of an
ptimal alignment for the given trace.
(3) Solving. We use an SMT solver to obtain a satisfying as-

ignment ν for the following constrained optimization problem:

init ∧ϕfinal ∧ϕtrans ∧ϕenabled ∧ϕmark ∧ϕdata ∧ϕδ minimizing dm,n

(Φ)

Next, we illustrate the encoding on our running example.

xample 6. We illustrate the encoding on the DPN from
xample 1, and the log trace e = ⟨(a, {x ↦→ 2}), (b, {y ↦→ 1})⟩
rom Example 2. For simplicity, we assume that the maximal
ength of the process run in the optimal alignment is n = 3.
e add an additional silent transition from p3 to itself (cf. the

emarks at the beginning of Section 3.2), called f. For readability,
he silent transition from p2 to p3 is called c, and the transition
rom p1 to p3 is called e; and we write a, b, . . . , f for the integers
, 2, . . . , 6 when referring to transition numbers. First, we get the
ollowing constraints for the process run:

0,0 = 1 ∧ M0,1 = M0,2 = M0,3 = 0 ∧ X0,x=X0,y=0 (ϕinit )

3,0 = M3,1 = M3,2 = 0 ∧ M3,3 = 1 (ϕfinal)⋀
≤i≤3

(Si = a ∨ Si = b ∨ Si = c ∨ Si = d ∨ Si = e ∨ Si = f) (ϕtrans)⋀
1≤i≤3

(Si = a → Mi−1,0 ≥ 1) ∧ (Si = b → Mi−1,1 ≥ 1)

∧ (Si = c → Mi−1,2 ≥ 1) ∧

(Si = d → Mi−1,3 ≥ 1) ∧ (Si = e → Mi−1,1 ≥ 1)

∧ (Si = f → Mi−1,3 ≥ 1) (ϕenabled)⋀
(Si = a → (Mi−1,0−Mi,0 = 1 ∧ Mi,1−Mi−1,1 = 1
1≤i≤3
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d1,1 = min(d0,0 + [P=]1,1, d0,1 + 1, d1,0 + [PM ]1) d2,1 = min(d1,0 + [P=]2,1, d1,1 + 1, d2,0 + [PM ]1)
d1,2 = min(d0,1 + [P=]1,2, d0,2 + 1, d1,1 + [PM ]2) d2,2 = min(d1,1 + [P=]2,2, d1,2 + 1, d2,1 + [PM ]2)
d1,3 = min(d0,2 + [P=]1,3, d0,3 + 1, d1,2 + [PM ]3) d2,3 = min(d1,2 + [P=]2,3, d1,3 + 1, d2,2 + [PM ]3)
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T

∧ Mi,2 = Mi−1,2 ∧ Mi,3 = Mi−1,3))⋀
1≤i≤3

(Si = b → (Mi−1,1−Mi,1 = 1 ∧ Mi,2−Mi−1,2 = 1

∧ Mi,0 = Mi−1,0 ∧ Mi,3 = Mi−1,3))⋀
1≤i≤3

(Si = c → (Mi−1,2−Mi,2 = 1 ∧ Mi,3−Mi−1,3 = 1

∧ Mi,0 = Mi−1,0 ∧ Mi,1 = Mi−1,1))⋀
1≤i≤3

(Si = d → (Mi,0 = Mi−1,0 ∧ Mi,1 = Mi−1,1

∧ Mi,2 = Mi−1,2 ∧ Mi,3 = Mi−1,3))⋀
1≤i≤3

(Si = e → (Mi−1,1−Mi,1 = 1 ∧ Mi,3−Mi−1,3 = 1

∧ Mi,0 = Mi−1,0 ∧ Mi,2 = Mi−1,2))⋀
≤i≤3

(Si = f → (Mi,0 = Mi−1,0 ∧ Mi,1 = Mi−1,1

∧Mi,2 = Mi−1,2 ∧ M1,3 = M0,3)) (ϕmark)⋀
1≤i≤3

(Si = a → (Xi,x ≥ 0 ∧ Xi,y = Xi−1,y))⋀
1≤i≤3

(Si = b → (Xi,y > 0 ∧ Xi,x = Xi−1,x))⋀
1≤i≤3

(Si = c → (Xi−1,x ≤ 3 ∧ Xi−1,y < 4

∧ Xi,x = Xi−1,x ∧ Xi,y = Xi−1,y))⋀
1≤i≤3

(Si = d → (Xi,y = Xi−1,y+1 ∧ Xi,x = Xi−1,x))⋀
1≤i≤3

(Si = e → (Xi−1,x ≤ 3 ∧ Xi,y = Xi−1,y ∧ Xi,x = Xi−1,x))⋀
≤i≤3

(Si = f → (Xi,x = Xi−1,x ∧ Xi,y = Xi−1,y)) (ϕdata)

t remains to add constraints for the alignment cost. Using the
tandard cost function, we set [PL]i = 1 for all i; [PM ]j = ite(Sj =

∨ Sj = e, 0, 1) for all j to give model moves cost 0 if they use a
ilent transition and cost 1 otherwise; and

P=]1,j = ite(Sj = a, ite(Xj,x = 2, 0, 1), ∞)
P=]2,j = ite(Sj = b, ite(Xj,y = 1, 0, 1), ∞).

hen, we get from (ϕδ) the equations di,0 = i for all 0 ≤ i ≤ 2,
0,j = 1 + d0,j−1 for all 0 < j ≤ 3, and the equations in Box I.
One possible solution to the constrained optimization problem

s the assignment ν such that ν(M0,0) = ν(M1,1) = ν(M2,2) =

(M3,3) = 1 and all other Mi,j are assigned 0; ν(S1)= a, ν(S2)= b,
nd ν(S3)= c; ν(X0,x)= ν(X0,y)= ν(X1,y)= 0, ν(X1,x)= ν(X2,x)=
(X3,x)= 2, and ν(X2,y)= ν(X3,y)= 1. The relevant distance vari-
ble assignments are ν(d0,0)= ν(d1,1)= ν(d2,2)= 0, so the cost of
he alignment is 0. This corresponds to the optimal alignment γ1
hown in Example 2.
8

(4) Decoding. Assuming that the set of transitions T = {t1, . . . ,
t|T |} is ordered following the order already used for the encoding,
or a satisfying assignment ν for (Φ), we can obtain a process
un decoding fν = ⟨f1, . . . , fn⟩, where fi = (tν(Si), βi) and the
transition variable assignment βi is procured as follows: Let the
state variable assignments αj, 0≤ j≤ n, be given by αj(v) =

(Xj,v), for all v ∈ V . Then, βi(vr ) = αi−1(v) and βi(vw) = αi(v),
or all v ∈ V . Next, we use properties of the edit distance [21] to
ecode an alignment γ = γm,n of e and fν = ⟨f1, . . . , fn⟩. To that
nd, consider the (partial) alignments γi,j recursively defined as
ollows:3

γ0,0 = ϵ γi+1,0 = γi,0 · (ei+1, ≫) γ0,j+1 = γ0,j · (≫, fj+1)

γi+1,j+1 =

⎧⎪⎪⎨⎪⎪⎩
γi,j+1 · (ei+1, ≫) if ν(di+1,j+1) = ν([PL] + di,j+1)
γi+1,j · (≫, fj+1) if otherwise ν(di+1,j+1)

= ν([PM ]j+1 + di+1,j)
γi,j · (ei+1, fj+1) otherwise

We will show in Section 3.3 that the alignment constructed
n this way is indeed optimal.

As remarked at the beginning of this section, our approach
o far assumed that the final marking of the DPN has a silent
ait transition. While this is not possible if the final marking

s empty, we next explain that our encoding can be adapted to
ccommodate this case:

emark 1. To avoid fixing the length of the process run in the
lignment to exactly n, and allow instead a process run that has
t most length n without adding artificial wait transitions, the
ncoding can be adapted as follows: we use an additional SMT
ariable len of type integer to represent the length of the process
un, add a constraint 0 ≤ len ≤ n, and modify ϕfinal to state that
he run is final at instant len:
n

j=0

len= j →

⋀
p∈P

Mj,p = MF (p)

and the minimization objective is modified to perform a case
distinction on len:

ite(len= 0, dm,0, . . . ite(len= n − 1, dm,n− 1, dm,n) . . . )

hile this modified encoding is always sound, it is in general
referable to add silent transitions on final states if possible, as
ested ite expressions may negatively impact solver performance.

.3. Correctness

In this section we prove key formal properties of the decoding
efined above. First, we show that the process run decoding is
ndeed a valid run.

emma 3. Let N be a DPN, e a log trace and ν a solution to (Φ).
hen the process run decoding satisfies fν ∈ Runs(N ).

3 Here, given x = ⟨x1, . . . , xn⟩, its concatenation with an element x′ is defined
as x · x′

= ⟨x , . . . , x , x′
⟩.
1 n
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roof. Let Mi be the marking such that Mi(p) = ν(Mi,p), for all
p∈ P , and αi the state variable assignment such that αi(v) =

(Xi,v), for all v ∈ V and i, 0≤ i≤ n. First, we show by induction
n n that for the process run fν = ⟨f1, . . . , fn⟩ it holds that
MI , α0)

fν
−→(Mn, αn).

ase case. If n = 0, then fν is empty. As ν satisfies ϕinit , it must
be that M0 = MI and α0 is the initial assignment, so the
claim trivially holds.

nductive step. Assume that fν = ⟨f1, . . . , fn+1⟩ and for its pre-
fix f′ = ⟨f1, . . . , fn⟩ it holds that (MI , α0)

f′
−→(Mn, αn). If

fn+1 = (tj, β) for some j s.t. 1≤ j≤ |T |, then, by con-
struction of fν , we have that ν(Sn) = j. Since ν is a
solution to (Φ), it satisfies ϕenabled so that tj is enabled
in Mn. Moreover, as ν satisfies ϕmark and ϕdata, it holds
that (Mn, αn)

fn+1
−−→(Mn+1, αn+1). This concludes the induction

proof.
inally, given that ν also satisfies ϕfinal, the last marking must be
inal and hence fν ∈ Runs(N ).

Next, we demonstrate that the above decoding yields an opti-
al alignment.

heorem 1. Let N be a DPN, e a log trace and ν a solution to (Φ).
hen γm,n ∈ Alignopt (N , e).

roof. By Lemma 3, fν ∈ Runs(N ). We first note that [P=],
PL], and [PM ] are correct encodings of P=, PL, and PM from
ection 2.2, respectively. For PL this is trivial. For PM , the case
istinction encodes the number of written variables depending
n the value of Sj. For P=, lab(Sj, bi) is true iff the value of Sj
orresponds to a transition that is labeled bi. If the labels match,
he expression

∑
v∈write(bi)

ite(αi(v)= Xi,v, 0, 1) encodes the num-
er of mismatching data values, as stipulated by the standard cost
unction.

Let di,j = ν(di,j), for all i, j such that 0 ≤ i ≤ m and 0 ≤ j ≤ n.
e show the stronger statement that γi,j is an optimal alignment

or e|i and fν |j with cost di,j, by induction on (i, j).

ase case. If i= j= 0, then γi,j is the trivial, empty alignment
of an empty log trace and an empty process run, which is
clearly optimal with cost di,j = 0, as defined in (ϕδ).

tep case. If i= 0 and j> 0, then the optimal alignment is a
sequence of model moves with cost [PM ]1 + · · · + [PM ]j, as
stipulated in (ϕδ), and the optimal alignment is defined as
γ0,j = ⟨(≫, f1), . . . , (≫, fj)⟩.

tep case. If j= 0 and i> 0, then the optimal alignment is a
sequence of log moves with cost [PL] + · · · + [PL], again
as stated in (ϕδ), and the optimal alignment is defined as
γi,0 = ⟨(e1, ≫), . . . , (ei, ≫)⟩.

tep case. If i, j > 0, then, since ν satisfies (ϕδ), di,j is the mini-
mum of ν([P=]i,j) + di−1,j−1, ν([PL]) + di−1,j, and ν([PM ]j) +

di,j−1. By the induction hypothesis, di−1,j−1, di−1,j, and di−1,j
are the costs of the optimal alignments for e|i−1 and fν |j−1;
e|i−1 and fν |j; and e|i and fν |j−1, respectively. As [P=],
[PL], and [PM ] are correct encodings of P=, PL, and PM ,
respectively, by definition of a distance-based cost function
(Definition 9), di,j is thus the optimal alignment cost of e|i
and fν |j, and it is clear from the construction of γi,j is an
alignment that has exactly this cost.

.4. Complexity

In this section we show that the decision problem associated
ith the optimal alignment problem is NP-complete for relaxed
9

ata-sound DPNs with linear arithmetic, so that the complexity
f the approach presented in Section 3.2 is optimal. Let a cost
unction κ be admissible if it is distance-based, its parameter
unctions P=, PM , and PL are effectively computable, and they can
e defined by linear arithmetic expressions and case distinctions.
or c ∈ N and an admissible cost function κ , let Alignc be the
roblem to decide whether a relaxed data-sound DPN and a log
race admit an alignment of cost c .

emma 4. For an admissible cost function, the problem Alignc is
P-complete.

roof. Given a DPN N , a log trace e, and some c ∈ N, the
ncoding from Section 3.2 yields an SMT problem over linear
rithmetic that is satisfiable if and only if an alignment of cost
exists, by adding the constraint dm,n = c instead of minimizing
m,n (cf. Theorem 1). The size of the encoding is polynomial in
he size of N and the length of e. Thus, since satisfiability of the
elevant class of SMT problems is in NP [26], our approach to
ecide Alignc is in NP.
Next, Alignc is NP-hard since it is easy to reduce satisfiability

f a boolean formula (SAT) to Align0: For a formula ϕ with
ariables V , let Nϕ be the DPN where V is the set of variables
n ϕ and the control structure is as follows:

p0 p1

t⊤ : ⊤

tϕ : ϕw

Here ϕw is the formula obtained from ϕ by replacing all variables
∈ V by vw . The initial marking is {p0}, and the final marking is

p1}. The DPN Nϕ is relaxed data-sound due to the transition t⊤.
et e be the log trace consisting of the single event (tϕ, ∅), and
the standard (distance-based) cost function κdist (as defined in
ection 2.2). We have f0 = (t⊤,∅) ∈ Runs(Nϕ) and κ(e, f0) = ∞.
f ϕ is satisfiable by some assignment α, we also have f1 =

(tϕ, βw)⟩ ∈ Runs(Nϕ), where βw is the assignment such that
βw(vw) = α(v) for all v ∈ V , and κ(e, f1) = 0. Thus, e admits
n alignment of cost 0 if and only if ϕ is satisfiable.

The proof shows that our approach to decide Alignc is in
P, whereas the method presented in [8,9] is exponential in the
ength of the log trace.

.5. Possible extensions

In this section, we discuss how our SMT-based approach can
e extended towards the support of numerous background theo-
ies not mentioned in this paper so as to constrain the data objects
anipulated by the DPN as well as to express sophisticated cost

unctions. Indeed, in the related literature [8,9], the guards of
PNs are ‘linear boolean’ expressions, i.e., they combine arith-
etical operations with boolean operators; in our approach, we
an enrich the language of guards by employing every function
nd relation symbol used in every first-order theory supported
y SMT solvers (e.g., arrays, lists, and sets). For example, the
se of relational predicates in DPN guards opens the possibil-
ty of natively extending our framework so as to model struc-
ured background information: this additional structure allows
s, e.g., to incorporate in the formal model full-fledged relational
atabases from which data injected in the net are taken, following
he SMT-based approaches as in [27,28]: theoretically, this would
equire to exploit, as background first-order theory, the theory of
ninterpreted symbols EUF built on top of an arbitrary first-order
ignature Σ . If, additionally, one wants to admit the user to inject
xternal (possibly fresh) value data into the relational database,
uch as integers or reals, then one can rely on the SMT theories
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or constraining arithmetic datatypes like LIA and/or LQA. The
integration of such datatypes with the predicates from the re-
lational database is guaranteed by the native flexibility of SMT
solvers to reason modulo the combination of different theories:
specifically, in this context, the underlying combined theory of
interest would be EUF ∪LIA, EUF ∪LQA or EUF ∪LIA∪LQA.

Considering more complicated background theories that can
model different kinds of datatypes opens several directions
towards possible extensions of the theoretical setting where
to perform conformance checking. Indeed, more sophisticated
frameworks for modeling data-aware processes that extend DPNs
in several ways have been studied recently: a notable one is
given by COA-nets [6,29], where, as it happens for DPNs, the
process component is formalized using a Petri Net-based model,
but where places contain tokens carrying unboundedly many
‘data’ tuples retrieved from a persistent storage, called catalog.
SMT-based techniques have been proved to be successful to verify
safety of COA-nets, which strongly suggests that the approach via
SMT presented in this paper can be effectively lifted to perform
conformance-checking tasks where the underlying process is
modeled using COA-nets instead of DPNs.

Finally, the background theory can not only constrain the data
object manipulated by the net, but also increase the expressive-
ness of the kind of cost functions that could be defined. In fact,
since sophisticated predicates are available in our language, one
can employ them, e.g., in the parallel move penalty function, so
as to model different examples of edit distance as the following
one (inspired by setting such as the one is [28,29]):

Example 7. Suppose that the background information of the
process is stored in a typed relational DB. In this DB, relations are
typed in the sense that each attribute has a specific type. Types
for relation attributes are usually of two different kinds: ‘id’ types
and ‘value’ types. The first ones account for identifiers of objects
contained in the DB relations, whereas the second ones are used
for injecting specific datatype values into the DBs, such strings or
integers. Let us assume that our DPNs interact with such a DB, in
the sense that variables can take values from the attributes of its
relations. Accordingly, variables are typed as well: for this reason
we assume that V := Vid ⊎ Vval, i.e., every variable is either of the
‘id-type’ or of the ‘value-type’.

In such a context, we define the synchronous move penalty
as a combination of two different contributions, depending on
whether the variables has id or value type. Indeed, a natural
definition of P= would be:

P=((b, α), (t, β)) = |{v ∈ dom(α) and v ∈ Vid |

¬R(α(v)), R(β(vw))}| + Σici,

if ℓ(t) = b, where R is some relation from the database DB and
i are integer numbers such that α(vi) := β(vw

i ) + ci, for every
i ∈ Vval. This means that P= is the sum of two contributions: the

first one applies to ‘id-type’ variables and counts the number of
write variables such that their values in the model run is stored
in the relation R whereas their values in the log trace are not;
the second one sums, for every ‘value-type’ variable, the discrete
distance between the values taken in the model run and in the log
trace. Notice that reasoning with such kinds of penalties requires
that the underlying SMT solver exploits combinations of theories:
specifically, for this example, we are leveraging the combined
theory EUF ∪ LIA, where EUF is employed for the DB relation
symbols, while LIA allows us to use sums and integers.

4. Trace clustering

Clustering techniques are used to group together multiple
traces in a process log so as to simplify and optimize several forms
10
of analysis [30], including conformance checking [18,31]. In this
section we introduce a novel form of clustering that is instru-
mental to simplify our multi-perspective conformance checking
technique. The idea is to partition the log into clusters, where all
races within the same cluster are guaranteed to share the same
lignment cost. That is, the alignment cost has to be computed
nly once for one (non-deterministically selected) representative
race of the cluster, which can provide substantial computational
enefits for clusters with considerably many traces. We present
ur clustering idea in two steps. We first introduce a general
quivalence relation on log traces, which thus identifies clusters
s equivalence classes. We then provide an instantiation of such
relation that compares traces in the log by considering the

atisfaction of guards of the DPN, thus providing a sort of ‘data
bstraction-based’ clustering.

efinition 12 (Cost-based clustering). Given a DPN N , a log L, and
a cost function κ , a cost-based clustering is an equivalence relation
≡

κ
opt
N

over L, where, for all traces e, e′
∈ L s.t. e ≡

κ
opt
N

e′ we have
that κ

opt
N (e) = κ

opt
N (e′).

Notice that, being linked by an equivalence relation from
above, two traces are simply meant to belong to the same cluster.
With the above definition we add a condition that if two traces
are in the same cluster, they must have the same optimal align-
ment cost. This, however, does not mean that different clusters
necessarily correspond to different optimal alignment costs as
the clustering need not group all traces with the same optimal
alignment cost into the same equivalence class.

We now introduce one specific equivalence relation that
focuses on DPN guards performing variable-to-constant compar-
isons, and then show that this equivalence relation is a cost-
based clustering. By focusing on guards, one can in fact improve
performance of alignment-based analytic tasks. Indeed, variable-
to-constant guards, although simple, are extensively used in
practice, and they have been subject to an extensive body of
research [10]. Moreover, this class of guards is common in bench-
marks from the literature, is the one required to model decisions
based on the DMN S-FEEL standard, and is the target of guard
discovery techniques based on decision trees [13]. Note, however,
that we do not at all require that the considered DPNs use only
such guards — richer guards are simply not exploited in the
clustering.

Recalling that constraints are used in DPNs as guards associ-
ated to transitions, and that a constraint is in general a boolean
expression whose atoms are comparisons (cf. Section 2.1), we
write Atoms(c) to refer to the set of all atoms in a guard c ∈GN .
Given a DPN N , a variable-to-constant atom is an expression of
the form x ⊙ k, where x∈ V r

∪ Vw , ⊙ ∈ {>, ≥, =}, and k is a
constant in Z or Q. We say that a variable v ∈ V is restricted to
constant comparison if all atoms in the guards of N that involve vr

or vw are variable-to-constant atoms. For such variables, we also
introduce the set atsv = {v ⊙ k | x ⊙ k ∈ Atoms(c), for some c ∈

GN , x ∈ {vr , vw
}}, i.e., the set of comparison atoms v⊙k as above,

this time expressed with non-annotated variables. The set atsv
can be seen as a set of predicates with free variable v.

Intuitively, given a cost function as in Section 2.2, the optimal
alignment of a log trace does not depend on the actual variable
values specified in the events in the log trace, but only on whether
the atoms in atsv are satisfied. In this sense, our approach can be
considered as a special form of predicate abstraction. Based on this
idea, trace equivalence is defined as follows.

Definition 13. For a variable v that is restricted to constant
comparison and two values u1, u2, let u1 ∼

v
cc u2 if for all v ⊙ k ∈

ats , u ⊙k holds iff u ⊙k holds. Two event variable assignments α
v 1 2
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nd α′ are equivalent up to constant comparison, denoted α ∼cc α′,
f dom(α) = dom(α′) and for all variables v ∈ dom(α), either (i)
(v) = α′(v), or (ii) v is restricted to constant comparison and
(v) ∼

v
cc α′(v).

This definition intuitively guarantees that α and α′ ‘‘agree on
atisfying’’ the same atomic constraints in the process. For exam-
le, if α(x) = 4 and α′(x) = 5, then, given two constraints x > 3
nd x < 2, we will get that α |H x > 3 and α′

|H x > 3, whereas
̸|H x < 2 as well as α′

̸|H x < 2.

efinition 14 (Equivalence up to constant comparison). Two
vents e = (b, α) and e′

= (b′, α′) are equivalent up to constant
omparison, denoted e ∼cc e′, if b = b′ and α ∼cc α′. Two
log traces e, e′ are equivalent up to constant comparison, denoted
e ∼cc e′, iff their events are pairwise equivalent up to constant
comparison. That is, e = ⟨e1, . . . , en⟩, e′

= ⟨e′

1, . . . , e
′
n⟩, and

ei ∼cc e′

i for all i, 1≤ i≤ n.

Example 8. In Example 1, variable x is restricted to constant
comparison, while y is not. Since atsx = {x ≥ 0, x ≤ 3}, the log
traces e1 = ⟨(a, {x ↦→ 2}), (b, {y ↦→ 1})⟩ and e2 = ⟨(a, {x ↦→

3}), (b, {y ↦→ 1})⟩, satisfy e1 ∼cc e2, but for e3 = ⟨(a, {x ↦→

4}), (b, {y ↦→ 1})⟩ we have e1 ̸∼cc e3 because 3 ̸∼
x
cc 4, and

e4 = ⟨(a, {x ↦→ 3}), (b, {y ↦→ 2})⟩ satisfies e1 ̸∼cc e4 since
the values for y differ. The equivalent traces e1 and e2 have the
ame optimal cost with respect to the standard cost function from
ection 2.2: for the alignments

1 :
a x ↦→ 2
a {xw

↦→ 2}
b y ↦→ 1
b {yw

↦→ 1}
≫

τ
γ2 :

a x ↦→ 3
a {xw

↦→ 3}
b y ↦→ 1
b {yw

↦→ 1}
≫

τ

γ3 :
a x ↦→ 4
a {xw

↦→ 3}
b y ↦→ 1
b {yw

↦→ 1}
≫

τ

we have κ
opt
N (e1) = κ(γ1) = 0 and κ

opt
N (e2) = κ(γ2) = 0.

ote, however, that the respective process runs γ1|M and γ2|M
iffer. On the other hand, γ3 is an optimal alignment for e3 but
(γ3) = κ

opt
N (e3) = 1.

Moreover, e1 and e3 show that for trace equivalence it does
ot suffice to consider model transitions with activity labels that
ccur in the traces: all events in e1 and e3 correctly correspond
o transitions with the same labels in N , but for a later transition
he value of x makes a difference. This motivates the requirement
hat in equivalent traces ( Definition 14) the values of a variable v

hat is restricted to constant comparison satisfies the same subset
f atsv .

We next show that equivalence up to constant comparison
s a cost-based clustering, provided that the cost function sat-
sfies certain mild requirements. To that end, we consider a
istance-based cost function κ from Definition 9 and call it
omparison-based if the following conditions hold: 1. PL(b, α) does
ot depend on the values assigned by α, and PM (t, β) does not de-
end on the values assigned by β; 2. the value of P=((b, α), (t, β))
epends only on whether conditions b = ℓ(t) and α(v) = β(vw)
re satisfied or not.
Note that this requirement is satisfied by the cost functio-

s in Section 2.2. Indeed, in the standard cost function, PL(b,
) = 1 and thus it does not depend on α. Moreover, the seco-
d condition is clearly satisfied, as in P=((b, α), (t, β)) =

{v ∈ dom(α) | α(v) ̸= β(vw)}|, for b = ℓ(t), we only need to
heck whether α(v) ̸= β(vw).

heorem 2. Equivalence up to constant comparison is a cost-based
lustering with respect to any comparison-based cost function.

roof. We need to show that for any two traces e1 and e2 such

hat e1 ∼cc e2 and a comparison-based cost function κ , it holds

11
hat e1 ≡
κ
opt
N

e1. For a partial process run σ , let αsv(σ ) be the state
ariable assignment after the last transition firing of the partial
rocess run σ . Note that since e1 ∼cc e2, the lengths of the two
races as well as their sequences of executed activities coincide.
o prove the claim, we verify that if e1 has an alignment γ1 with
ost κ(γ1) = δ(e1, f1) for some process run f1 = γ1|M , then there
s a process run f2 such that δ(e2, f2) = κ(γ1), and hence there is
n alignment γ2 with γ2|L = e2, γ2|M = f2 and κ(γ2) = δ(e2, f2).
ore precisely, let |e1| = |e2| = m, f1 = γ1|M and |f1| = n. Then,
e show by induction on m+n that there exists a process run f2
uch that |f2| = n, δ(e1, f1) = δ(e2, f2), and αsv(f1) ∼cc αsv(f2).

ase case (m = n = 0). In this case all of e1, e2, and f1 are empty.
By taking the empty run also for f2, the claim is trivially
satisfied as δ(ϵ, ϵ) = 0.

tep case (m > 0, n = 0). By definition, δ(e1, ϵ) = PL((e1)m) +

δ(e1|m−1, ϵ). As e1 ∼cc e2 implies e1|m−1 ∼cc e2|m−1, we
can apply the induction hypothesis to obtain δ(e1|m−1, ϵ) =

δ(e2|m, ϵ). By the assumption κ is comparison-based, and
activities in e1 and e2 coincide, so PL((e1)m) = PL((e2)m). It
follows that δ(e2, ϵ) = PL((e2)m)+δ(e2|m−1, ϵ) = PL((e1)m)+
δ(e1|m−1, ϵ) = δ(e1, ϵ).

tep case (m = 0, n > 0). Similar as the previous case, using the
fact that PM ((f1)n) = PM ((f2)n) because κ is comparison-
based.

tep case (m > 0, n > 0). Let e1 = (b, α1) = (e1)m (resp. e2 =

(b, α2) = (e2)m) be the last event in e1 (resp. e2), and
f = (t, β1) the last transition firing in f1. According to
Definition 9, δ(e1, f1) is defined as a minimum of three
expressions. Reasoning as in the previous two cases shows
that there are process runs f̂2, f2 such that PL(e1)+δ(e1|m−1,

f1) = PL(e2) + δ(e2|m−1, f̂2) and PM (f ) + δ(e1, f1|n−1) =

PM ((f2)n) + δ(e2, f2|n−1). We now show that there is also a
process run f2 such that

P=(e1, f )+ δ(e1|m−1, f1|n−1) = P=(e2, (f2)n)+ δ(e2|m−1, f2|n−1)

(1)

so δ(e1, f1) = δ(e2, f2) follows. As e1 ∼cc e2 implies
e1|m−1 ∼cc e2|m−1, by the induction hypothesis there exists
a process run f′2 such that |f′2| = n− 1, δ(e1|m−1, f1|n−1) =

δ(e2|m−1, f′2), and αsv(f1|n−1) ∼cc αsv(f′2).
We set f2 = f′2 · (t, β2), where β2 is defined as follows:
for all v ∈ V , β2(vr ) = αsv(f′2)(v), and β2(vw) is defined as
either β2(vw) = β1(vw) if v is not restricted to constant
comparison, or otherwise

β2(vw) =

⎧⎨⎩
α2(v) if β1(vw) = α1(v)
α1(v) if β1(vw) ̸= α1(v) and β1(vw) = α2(v)
β1(vw) otherwise

(2)

We now show that (i) β2 satisfies guard(t), (ii) αsv(f1) ∼cc
αsv(f2), and (iii) P=((b, α1), (t, β1)) = P=((b, α2), (t, β2)).
For (i), note that αsv(f1|n−1) ∼cc αsv(f′2) implies that for all
v ∈ V , either β1(vr ) = β2(vr ), or v is restricted to constant
comparison and β1(vr ) ∼

v
cc β2(vr ). Moreover, by definition

of β2 we have for all v ∈ V , either β1(vw) = β2(vw), or v

is restricted to constant comparison and by Eq. (2) one of
the following holds: β2(vw) = α2(v) ∼

v
cc α1(v) = β1(vw), or

β2(vw) = α1(v) ∼
v
cc α2(v) = β1(vw), or β1(vw) = β2(vw);

where we use α1(v) ∼
v
cc α2(v), which follows from e1 ∼cc

e2. Thus, we have the following (⋆): β1 and β2 coincide on all

variables that are not restricted to constant comparison, and
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satisfy β2(vw) ∼
v
cc β1(vw) otherwise. It follows that since

∼cc-equivalent assignments satisfy the same constraints,
and β1 |H guard(t), also β2 |H guard(t). Item (ii) then follows
from (⋆) and the construction of a state variable assignment
after a transition firing.
For (iii), we observe that for all variables v such that β1(vw)
̸= β2(vw), i.e., β2(vw) is defined by one of the three cases
in Eq. (2), one can check that β1(xw) = α1(x) if and only if
β2(xw) = α2(x). As κ is a comparison-based cost function, it
follows that P=((b, α1), (t, β1)) = P=((b, α2), (t, β2)).
From (i) we obtain that f2 is indeed a (partial) process run
in N , and (iii) implies Eq. (1). □

An interesting byproduct of the constructive proof of
Theorem 2 is that given γ ∈ Alignopt (N , e), an optimal alignment
γ for a log trace e, for every trace e′ in the same cluster (i.e., e ∼cc
e′) an optimal alignment is easily computed from γ , e, and e′ in
linear time.

All in all, we thus get that our clustering technique allows us
to compute faithful conformance metrics on logs by calculating
alignment costs only on a single representative trace per cluster.

5. Extended conformance checking artifacts

We next demonstrate how the CoCoMoT framework accom-
modates further conformance checking tasks studied in the pro-
cess mining literature, notably multi- and anti-alignments. We
again assume a distance-based cost function κ .

5.1. Multi-alignments

Multi-alignments leverage the concept of alignments to a set
of traces, by asking for one process run that minimizes the dis-
tance to all traces in the set. They are for instance of interest to
find a representative full run of a model for a given portion of a
log [18]. The following definition is based on [25].

Definition 15 (Multi-alignment). For a DPN N and a finite set
of log traces S, an optimal multi-alignment is given by a process
run f ∈ Runs(N ) that minimizes the quantity maxe∈S dist(e, f)
representing the maximal distance to any log trace in S, that is, f
is a solution to argminu∈Runs(N ) maxe∈S dist(e,u).

Note that, instead of the maximum, one can use different
aggregation functions such as the sum, cf. [18, Def. 4]. The next
example illustrates the problem:

Example 9. Consider the DPN from Ex. 1 and the log traces e1 =

⟨(a, {x ↦→ 2}), (b, {y ↦→ 1})⟩ and e2 = ⟨(a, {x ↦→ 2}), (d, {y ↦→

2})⟩. On their own, both traces can be aligned with cost 0. The
situation changes if one considers instead multi-alignments, for
instance the following ones:

a {x ↦→ 2}
a {x ↦→ 2}
a {xw

↦→ 2}

b {y ↦→ 1}
≫

b {yw
↦→ 1}

≫

≫

τ

≫

d {y ↦→ 2}
d {yw

↦→ 2}

γ1 :

a {x ↦→ 2}
a {x ↦→ 2}
a {xw

↦→ 2}

b {y ↦→ 1}
≫

b {yw
↦→ 1}

≫

≫

τ

≫

d {y ↦→ 2}
≫

γ2 :

In γ1, the cost of the alignment for both e1 and e2 is 2
ccording to the standard cost function, as both contain a model
ove that writes one variable. On the other hand, in γ2, the
ost of the alignment for e1 is 0 and for e2 it is 1. In fact, the
atter is an optimal solution to the multi-alignment problem, with
ulti-alignment cost 1.
12
ncoding. Suppose one aims to solve the multi-alignment prob-
em for a DPN N and a finite set of log traces S = {e1, . . . , ek}.
irst of all, in a similar way as described in Section 3.1, we can
btain an upper bound on the length of the process run. Let n be
his bound. For each i, let (ϕi

δ) be the instantiation of the formula
ϕδ) in Section 3 with respect to ei. Let moreover mi = |ei|
nd di

mi,n be as defined in the equations (ϕi
δ). We abbreviate by

run = ϕinit ∧ ϕfinal ∧ ϕtrans ∧ ϕenabled ∧ ϕmark ∧ ϕdata the part
f the encoding that represents the process run. To solve the
ulti-alignment problem for N and S, we consider the following
ptimization problem:

run ∧

n⋀
i=1

ϕi
δ minimizing

k
max
i=1

di
mi,n (Φmulti)

Here, the maximum over a finite set can be encoded in SMT
y nested if-then-else-expressions. Given a satisfying assignment
or (Φmulti), we can apply the decoding from Section 3 to obtain
process run f and k alignments γ1, . . . , γk, that solve the multi-
lignment problem. Note that it is also easy to adopt a definition
f multi-alignments that uses the sum as aggregation function
cf. [18, Def. 4]), by changing the optimization objective in (Φmulti)
to

∑k
i=1 δimi,n.

Note that the cost-based clustering technique as presented in
Section 4 is compatible with multi-alignments, in the following
sense: suppose that a set of log traces S contains different traces e
and e′ such that e ∼cc e′, and let S ′

= S \{e′
}. Then the costs of an

optimal multi-alignment for S and an optimal multi-alignment for
S ′ coincide, i.e., maxe∈S distκ (e, f) = maxe∈S′ distκ (e, f): Indeed,
he proof of Theorem 2 shows that every alignment γ of cost k
or e corresponds to an alignment γ ′ of cost k for e′.

5.2. Anti-alignments

The conformance checking artifact of anti-alignments was in-
troduced to measure the precision of a model, by quantifying
how much the model’s behavior may differ from the behavior
observed in a log. To that end, one seeks a model run that deviates
as much as possible from all traces in a given log [32,33].

We first give the definition of anti-alignments from [25],
which can be seen as an ‘‘inversion’’ of multi-alignments in that
minimum and maximum are swapped:

Definition 16 (Anti-alignment). For a DPN N and a finite set
of log traces S = {e1, . . . , en}, an optimal anti-alignment of S
is given by a process run f ∈ PN that maximizes the quantity
mine∈S distκ (e, f) (which represents the minimal distance to any
log trace in S), i.e., f is a solution to argmaxu∈PN mine∈S distκ (e,u).

However, as also stated in [25], anti-alignments according to
Definition 16 are in general not defined in processes with loops.
We therefore consider the following variation, which restricts to
runs of bounded length, and assume the standard cost function
from Section 2.2.

Definition 17 (n-anti-alignment). For a DPN N , a finite set of log
traces S, and n∈N, an n-anti-alignment is given by a process run
f ∈ PN of length at most n such that mine∈S distκ (e, f) is maximal,
that is, f is a solution to argmaxu∈PN ,|u|≤n mine∈S distκ (e,u).

Example 10. Consider the DPN from Ex. 1 and the log trace
e = ⟨(a, {x ↦→ 2}), (b, {y ↦→ 1})⟩. A 3-anti-alignment for S = {e}
s e.g. the following one, with cost 4 (cost 1 for a synchronous
ove with incorrect write operation, cost 1 for a log move, and
ost 2 for a model move that writes one variable):
a {x ↦→ 2} b {y ↦→ 1} ≫ ≫
a {xw
↦→ 1} ≫ τ d {yw

↦→ 1}
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Note that the solution is not unique, as x could be assigned a
ifferent value.

ncoding. We again abbreviate by ϕrun = ϕinit ∧ ϕfinal ∧ ϕtrans ∧

enabled∧ϕmark∧ϕdata the encoding of the process run. To solve the
n-anti-alignment problem for N and S, we consider the following
ptimization problem:

run ∧

n⋀
i=1

ϕi
δ maximizing

k
min
i=1

di
mi,n (Φanti)

The minimum over a finite set can be encoded by nested if-
hen-else-expressions. Given a satisfying assignment for (Φmulti),
e can apply the decoding from Section 3 to obtain the desired
rocess run f and k alignments γ1, . . . , γk.
In the literature, also the notion of a (d, n)-anti-alignment for

set of traces S is used, which asks to find a run of length exactly
that has distance at least d to all traces in S [32]. CoCoMoT

an also accommodate this task, by replacing the maximization
bjective in (Φanti) by hard constraints

⋀k
i=1 (di

mi,n = d). The task
hus becomes a satisfaction rather than an optimization problem.

Finally, we note that just like the cost-based clustering tech-
ique from Section 4 is compatible with multi-alignments, it is
lso compatible with anti-alignments, for the same reasons as
iven in Section 5.1,.

. Implementation

In this section we report on the DPN conformance checking
ool cocomot, a proof-of-concept implementation based on the
ncodings in Section 3.2 and Section 5. We focus on the imple-
entation, optimizations, and experiments on benchmarks from

he literature. Source code and data sets are publicly available.4

.1. Implementation

The tool cocomot is a Python command line script: it takes
s input a DPN and a log, and computes an optimal alignment,
sing the standard cost function from Section 2.2. To this end,
he following standard input formats are supported:

• For process models the PNML5 format is used, which sup-
ports DPNs by allowing to specify the data variables along
with their types, as well as transition guards involving
linear arithmetic expressions. E.g., the PNML representa-
tion of the DPN from Example 1 can be found in the tool
repository.6

• The log is expected to be in the XES format.7 E.g., the trace
from Example 2 can be found in the tool repository.8

Alternatively, instead of computing the optimal alignment for
very trace in the log, cocomot can also produce multi- or anti-
lignments for a sublog. For efficiency, cocomot first prepro-
esses the log to a sublog of unique traces, and second applies
race clustering as described in Section 4 to further partition the
ublog into equivalent traces. The conformance check is then run
or one representative from every equivalence class.

The tool uses pm4py [34]9 to parse traces, and employs the
MT solvers Yices 2 [16] and Z3 [15] as backends, using the bind-
ngs provided by the respective Python interfaces. Since Yices 2

4 https://github.com/bytekid/cocomot
5 https://www.pnml.org/
6 https://github.com/bytekid/cocomot/blob/main/tests/test9/net.pnml
7 https://xes-standard.org/
8 https://github.com/bytekid/cocomot/blob/main/tests/test9/trace1_0.xes
9 https://pm4py.fit.fraunhofer.de/
 a

13
has no built-in optimization, we implemented a minimization
scheme using multiple satisfiability checks. Every check is run
with a timeout, to avoid divergence on large problems.

Encoding optimizations. To facilitate faster solving, and prune
the search space, we modified the encoding presented in
Section 3.2 in several ways. We report here on the most effective
changes.

(1) We perform a reachability analysis in a preprocessing step.
This allows us to restrict the range of transition variables Si
in (ϕtrans), as well as the cases Si = j in (ϕenabled) and (ϕmark)
to those transitions that are actually reachable. Moreover,
if a data variable v ∈ V cannot be written in step i because
no respective transition is reachable, we set Xi,v identical
to Xi−1,v to reduce the number of variables that represent
data values, for i > 0.

(2) If the net is 1-bounded, the marking variables Mi,p are
boolean rather than integer, as done in [20].

(3) Recall that the optimization objective dm,n in (Φ) is to be
minimized. Therefore, the equations of the form di+1,j+1 =

min(e1, e2, e3) in (ϕδ) can be replaced by inequalities di+1,j+1
≥ min(e1, e2, e3). The latter is equivalent to di+1,j+1 ≥

e1 ∨di+1,j+1 ≥ e2 ∨di+1,j+1 ≥ e3, which is processed by the
solver much more efficiently since it avoids an if-then-else
construct.

(4) Numerous subexpressions are replaced by fresh variables
together with defining equations (in particular when oc-
curring repeatedly).

We conclude this section by illustrating CoCoMoT on a real-
orld example.

xample 11. Fig. 1 shows a DPN for a road fine management
rocess by the Italian police [8]. It was generated by automatic
ining techniques along with expert domain knowledge. Here,
uards vw

= ? express that variable v is written by this transition
o an arbitrary value. For the example trace

(create fine, {a ↦→ 36, t ↦→ 0, p ↦→ 0, d ↦→ nil}),
send fine, {ds ↦→ 2879, e ↦→ 13}), (insert fine, ∅),
appeal to prefecture, {dp ↦→ 192}), (add penalty, {a ↦→ 74}),
send appeal, {d ↦→ #})⟩

the following optimal alignment is generated by cocomot:

create fine send fine insert
fine

appeal to
prefecture

add
penalty

send
appeal

≫

a ↦→ 36 ds ↦→ 2879 dp ↦→ 192 a ↦→ 74 d ↦→ #
t ↦→ 0 e ↦→ 13
p ↦→ 0
d ↦→ nil
create fine send fine insert

fine
appeal to
prefecture

≫ send
appeal

τ6

aw
↦→ 36 dsw ↦→ 0 dpw

↦→ 192 dw
↦→ G

tw ↦→ 0 ew
↦→ 13

pw
↦→ 0

dw
↦→ nil

This alignment has cost 3 according to the standard cost function:
1 for the log move, and 1 for each of the two mismatching data
values in send fine and send appeal. Alignments identify steps
where cases do not follow the normative model, thus hinting at
aspects where the business process could be improved: in this
case, first, add penalty should have happened before send appeal;
econd, the too high value for ds (a time interval) in send fine
ndicates that this event occurred too late; and third, while the
ssignment d ↦→ # is valid in send appeal, this choice causes the

https://github.com/bytekid/cocomot
https://www.pnml.org/
https://github.com/bytekid/cocomot/blob/main/tests/test9/net.pnml
https://xes-standard.org/
https://github.com/bytekid/cocomot/blob/main/tests/test9/trace1_0.xes
https://pm4py.fit.fraunhofer.de/
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Fig. 1. DPN for road fine data set.
Table 2
Characteristics of data sets used for the experiments.

# traces # unique # non-eq avg med max length

(A) road fines 150370 35681 4290 5.6 6 20
(B) hospital billing 100000 4047 4039 8.9 8 217
(C) sepsis 1050 846 846 16.3 14 185
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Table 3
Characteristics of DPNs used for the experiments.

|P| |T | |Tg | |L| |V | Data variable types

(A) road fines 9 19 11 13 8 4 int, 3 rat, 1 str
(B) hospital billing 34 36 16 29 4 1 bool, 3 str
(C) sepsis 48 36 2 3 2 3 rat

process to be in a deadlock afterwards, which witnesses the fact
that this process model is not data-aware sound [11].

6.2. Experiments

In this section, we describe first the benchmarks used, and
hen different experiments performed with these along with
ur conclusions. Unless stated otherwise, tests were run single-
hreaded on a 12-core Intel i7-5930K 3.50 GHz machine with
2 GB of main memory; we used Yices 2; and a timeout of two
inutes per trace.
Benchmarks. We tested cocomot on three data sets used in

arlier work [8,9], which are publicly available:

• Dataset (A) is the log of road traffic fines [35] that was
presented together with the DPN from Example 11 shown
in Fig. 1.

• Dataset (B) is a hospital billing log [36], matched against
the DPN [9, Fig. 15.3], a normative model created by do-
main experts.

• Dataset (C) is a log of a triage process for sepsis patients in
a hospital [37], matched against the normative model [9,
Fig. 13.3].

Table 2 gives an overview over these datasets, listing the
umber of traces, the unique number of traces, the equivalence
lasses after applying the clustering technique from Section 4,
nd the average/median/maximum trace length. Some of these
14
Table 4
Results of experiments: overview.

# traces ∞ enc solve κavg κmed κmax ProM

(A) road fines 4290 0 75 293 1.8 2 7 107
(B) hospital billing 4039 182 197 31083 2.9 3 51 267
(C) sepsis 846 653 192 471446 3.2 3 5 16

data sets use string variables. In cocomot, they are represented
by integer variables, encoding the string literals in the model as
distinct natural numbers (cf. [9, p. 87]). Table 3 collects some
data about the respective DPNs, namely the number of places
|P| and transitions |T |, the number of transitions with guard |Tg |,
he total number of guard literals |L|, and the number of data
ariables |V | with their type. All DPNs are one-bounded, and (A)
s even a transition system. The table shows that in data set
A) the control-flow perspective is small but the data perspec-
ive is comparatively rich, whereas data set (C) has contrastive
haracteristics, and (B) is somewhere in between.
Feasibility experiment. To evaluate feasibility, we ran coco-

ot on datasets (A), (B), and (C). Table 4 shows the results, listing
he number of processed traces (i.e., the equivalence classes after
lustering), the number of timeouts (120 s), the total encoding
ime in seconds, the total solving time in seconds (including
imeouts), and the average/median/maximal cost of an optimal
lignment. We also compare our results to those provided by
he other existing alignment-based conformance checking tool
or DPNs based on [8,9] and implemented as a plugin in ProM.10
e ran this plugin under the default settings over the datasets

rom above and included its execution time in the last column of
able 4.
Fig. 2 shows two diagrams for each data set: the left scatter

lots shows the computation time in seconds (y-axis) against
he trace length (x-axis); the right plots show how many traces

10 https://promtools.org/

https://promtools.org/


P. Felli, A. Gianola, M. Montali et al. Information Systems 117 (2023) 102230

(
(

Fig. 2. Trace length vs. solving time, and number of problems solved within time limit.
y-axis) were solved within different time limits in seconds
x-axis).

We briefly comment on the results for each data set:

(A) The great majority of traces in this data set is relatively
short, with a median length of 6, and accordingly the
median optimal alignment cost is as small as 2. All optimal
alignments are discovered within at most 16 s, and in fact,
99.6% of the traces are handled within 1s. The encoding
time accounts for slightly more than 20% of the total time,
which seems comparatively high, but this is due to the
small computation time overall. Trace clustering was par-
ticularly effective for this data set, using the predicates
delaySend ≥ 2160, delayJudge ≥ 1440, delayPrefecture ≥

1440, points < 0, and points > 0. In fact, trace clustering
cuts down the time to process the alignment by a factor
of 8.

(B) While the median trace length is only 8, there are some
long outliers (up to length 217). Accordingly, also the me-
dian cost of the optimal alignment is 3, thus higher than
for data set (A), and the maximal cost encountered was
51. In fact, cocomot times out on 56 long traces, and for
some others the optimal alignment computation required
almost the given timeout. However, 78% of the traces were
handled within 1s, and 93% within 10 s. For this data set,
the encoding time was negligible in comparison to the
solving time, and comprised less than 1% of the overall
computation time. The benefit of clustering was small.

(C) This log has longer traces than the previous two data sets,
and the control structure of the respective DPN is far more
complex. cocomot here suffers from many timeouts. How-
ever, when increasing the timeout, we could find optimal
alignments for all except for 37 examples. For long traces,
the computation required up to two hours, with optimal
15
alignment costs of up to 120. Also for this data set the en-
coding time was negligible compared to the solving time;
clustering was not applicable.

Overall, we see that cocomot performs reasonably well if
traces are not too long and the control flow structure is mod-
erately complex, even with rich data perspectives as in data sets
(A) and (B). In contrast, complex traces and control flow cause
a blowup in the search space and performance deteriorates, as
for data set (C). When comparing with ProM, this becomes even
more obvious. While ProM is faster than cocomot on all data sets,
for (A) the conformance checking times are roughly in the same
magnitude, whereas ProM outperforms cocomot by far on data
set (C). We attribute the relatively good performance of cocomot
on data set (A) to the rich data perspective, which requires the
approach implemented in ProM comparatively often to backtrack
and update assignments. On the other hand, the data perspective
in (B) and (C) are rather plain (transition guards are few and
simple), while the control flow is much more complex, involving
multiple tokens. In this case, the encoding-based approach does
not seem to be an advantage, as was also noted in earlier works
on conformance checking via SAT-based encodings [38]. How-
ever, we emphasize again the flexibility and modularity of the
CoCoMoT framework: it can easily be adapted to check e.g. anti-
and multi-alignments; whereas it is not clear how the approach
from [8,9] can be adopted for these tasks.

Scalability. To evaluate scalability of cocomot with respect
to model characteristics, we ran experiments with subsequently
enriched versions of the benchmarks (A)–(C), as follows. For each
of the three data sets, we selected a subset of traces for which
the conformance checking task can be accomplished by cocomot
in a couple of minutes. Precisely, for dataset (A) a representative
for every trace cluster in the log was taken (3856 traces); for (B)
all traces up to length 9 (2160 traces); and for (C) all traces up to
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Fig. 3. Scalability with respect to the control flow (left) and data perspectives (right).
ength 7 (128 traces). Below, we refer to these sublogs by LA, LB,
nd LC .
First, we focused on scalability with respect to the control

low: Given DPN N and some k ∈ N, we generated an ‘‘obfus-
ated’’ DPN Nk by adding k silent transitions without guards, in a
ay such that the set of valid runs is not modified as far as visible
ransitions are concerned. The results for k = 0, 10, . . . , 100
are shown in the left column of Fig. 3, with the x-axes listing
the number of added transitions, and the y-axes on the left the
encoding (blue) and solving time (green) in seconds. For dataset
(C), the y-axis on the right shows in addition the number of
timeouts (red); for datasets (A) and (B) no timeouts occurred.
These results show that for datasets (A) and (B), the additional
states have only moderate impact on the performance as the
runtime increases linearly. Data set (C) is in general difficult for
cocomot as shown above, and due to the complex control flow
additional states cause a severe deterioration.

Second, we evaluated scalability with respect to the data per-
spective. Given a DPN N for one of the three data sets and some
k ∈ N, we generated a modified DPN Nk as follows: for every
data variable v in N , copies v0, . . . , vk−1 were added; all vi are
ritten by all transitions that write v; every guard of the form
r
⊙ e for some operator ⊙ and expression e was expanded to

r
= vr

0 ∧ vr
0 = vr

1 ∧ · · · ∧ vr
k−1 ⊙ e, and similar for constraints

vw
⊙ e. Given log L and k, a modified log Lk was constructed by

creating for every assignment v ↦→ n, for some n, copies vi ↦→ n,
or all 0 ≤ i < k. The left column of Fig. 3 shows the results for
= 0, 1, 2, . . . , 9, with the x-axes showing k and the y-axes as
efore. On data set (B), cocomot scales very well, likely because
here are only four variables and few guards. On data set (A), the
ituation is different since the data perspective is rich; e.g., for
= 4 the modified DPN has 32 variables and eleven guards of

ize at least 19. However, for up to 20 variables the performance
eems reasonable. For data set (C), we attribute the moderate
16
scalability again to the fact that cocomot has in general difficulty
with the complex control flow.

7. Related work

To compare with the relevant literature, we single out three
kinds of related approaches:

• conformance checking techniques dealing with multiple
perspectives, paying particular attention to those dealing
with processes and data;

• conformance checking methods that, instead of using ad-
hoc algorithmic techniques, rely on encodings into general-
purpose symbolic AI technology, to the conformance check-
ing task is reduced; and

• work related to trace clustering.

Multi-perspective conformance checking. [39] proposed an
extension over the traditional alignment approach in which first
the process perspective was aligned, and afterwards additional
case attributes of the process were taken into account. This idea
was further developed in [40] into a framework using data Petri
nets as process models and solving the conformance checking
problem by, again, first aligning the process perspective only,
using off-the-shelf conformance checking techniques, and after-
wards addressing the data perspective by augmenting the already
computed alignment with write operations over process variables
by solving a mixed integer linear programming problem. Notice-
ably, the number of such problems to be solved is proportional
to the number of traces in the log. A further improvement of
the framework proposed in [40] was presented in [13]. There,
the authors proposed a faster A*-based technique which would
consider both process and data perspectives at once thanks to
a customizable cost function. The latter can be tweaked so as
to take into consideration concrete scenarios and, for example,
assign higher penalties to particular activities that enforce certain
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ata modifications. The setting considered in our work is very
imilar to the one proposed in [13], as we do not only use DPNs as
he process formalism, but also keep our cost function as abstract
s possible, leaving its instantiation to the end user. We also
iscuss caveats that one must take into account when designing
cost function within the CoCoMoT framework. Notice also that
ur approach is in principle more expressive than the one in [13],
hanks to the flexibility provided by SMT-based techniques: as
iscussed in detail in Section 3.5, one can enrich DPN guards
ith more sophisticated languages and datatypes (in the SMT
pirit) than arithmetical ones. Indeed, any datatype supported
y SMT solvers can be exploited for our reasoning task and,
ence, incorporated into the language of DPN guards. Moreover,
ur approach naturally extends to multi- and anti-alignments as
iscussed in Section 5, while these tasks were not considered
n [13].

In [41], the authors suggested a more fine-grained taxonomy
or addressing data and process interactions so as to identify
large range of deviations. By introducing so-called composite
oves, that pairwise match activities in a log and activities in
process model together with the required operations on the
ata, they devise a set of criteria for assessing the degree of
on-conformity. The approach is similar to the one in [39] in
hat it first aligns the control flow, and only then addresses the
ata dimension. However, the main difference (also with [13]
nd our work) lies in the ability to discover links between data
anipulations and process activities, and can account for, for
xample, data access operations executed outside log events.
A parallel line of research focuses on conformance checking

f declarative, multi-perspective processes enriched with data.
his traces back to seminal works like [42], which in case of
on-conformance only returns a coarse-grained output indicating
hich constraints are violated, and by which events. The ap-
roach in [43] improves on such coarse-grained output, employ-
ng ad-hoc algorithms tailored to Declare patterns extended with
calar data and metric temporal conditions. These algorithms do
ot rely on alignments, but are instead based on the notions of
onstraint activation and fulfillment, to compute counting metrics
n how many times a trace ‘‘interacts’’ with a constraint by
atisfying or violating it [44,45].
It is an interesting open question how the SMT-based ap-

roach presented here can be tuned to handle declarative, data-
ware constraints. This would pave the way towards conformance
hecking for data-aware mixed-paradigm process models con-
aining both procedural control-flow patterns and declarative
onstraints, which constitutes an compelling, recent line of in-
estigation that was so far tackled only for a pure control-flow
etting [46].
Lastly, it is important to mention another work dealing with

ulti-perspective conformance checking that does not use align-
ents and instead relies on a replay-based technique. In [47] the
uthors propose a conformance checking technique for (a variant
f) colored Petri nets that does not only capture the control
low dimension, but also considers objects with unique identity
hat dynamically evolve throughout the process execution. The
roposed replay-based technique allows to detect deviations that
appen at the control flow level due to missing object identifiers,
iolations of user-defined first-order rules (that can be evaluated
nly ‘‘locally’’, that is, given an event and a current marking),
nd differences between modeled and observed object identifiers
n the log. While the class of Petri nets considered in [47] is
ore expressive than DPNs (for example, a DPN can account
nly for a predefined finite number of simultaneously evolving
bjects), the replay-based conformance technique is different
rom the one based on alignments. Specifically, the former only
earches for deviations and terminates whenever the first one
17
has been detected, whereas the latter tries to find the ‘‘best’’
process model run closest to a given trace by accommodating
encountered deviations in the computed alignment.

Symbolic AI techniques for conformance checking. Alterna-
ives to more traditional, A*-based approaches are various works
hat exploit formal methods for checking conformance between
process model and a log trace. The first family of approaches

elies on automated planning techniques. In [48], the authors
howed how, given a k-bounded Petri net and a log trace, one
an check conformance by encoding the entire problem into
DDL. The encoded problem can then be solved by state-of-the-
rt planners, with the resulting plan corresponding to an optimal
lignment. A planning-based approach was also recently used for
ligning data-aware declarative processes in [49]. There, the main
dea lies in transforming both declarative models and log traces
nto finite constraint automata (for the declarative models this
s obtained using a known propositionalization technique), and
hen encoding everything into PDDL. There are more works that
ddress the alignment-based conformance checking problem for
etri nets without data guards using automata-based techniques
for example, [50,51]).

In our approach, we build upon a series of works [20,52] using
AT-based reasoning for conformance checking via alignments.
here, the whole conformance checking problem is encoded into
set of clauses, with minimization objectives and weighted vari-
bles. Specifically, the clauses represent the underlying Petri net
ogether with its execution semantics, and encode a distance
unction of choice, that embeds the alignment computation. Our
ncoding is virtually done in the same vein and extended so
s to account for data manipulating guards. At the same time,
s opposed to the SAT encoding, our approach allows to ac-
ount for potentially unbounded nets and consider other types of
ata guards as well as more advanced variants of cost functions.
38] proposed a new partial MaxSAT encoding for computing
lignments (using distance functions) as well as multi- and anti-
lignments. It is reported that the new encoding reduces the
emory footprint requirements and outperforms in solving time

he existing SAT encoding. It is subject to future work if and to
hat extent such an optimized encoding could be lifted to SMT
nd the data-aware setting studied here.
Trace clustering. Trace clustering is a wide area of investi-

ation in process mining. Traces are typically clustered to detect
utlier vs. common behaviors [53] or to improve the feasibility of
rocess discovery techniques, in terms of understandability [54]
nd/or performance [2,18].
Alignment-based techniques (exploiting in particular the no-

ion of anti-alignment) have been used to cluster traces depend-
ng on their degree of conformance to a reference process model,
ocusing on pure control-flow specifications without data [18,20].

The conceptual idea behind our clustering approach is to single
ut traces that represent a set of traces that differ only in their
ata values. Each such trace acts as a representative for a cluster
f multiple traces, all yielding the same alignment cost and
lignments that are easily reducible to each other (in the precise
ense detailed in Section 4). Differently from the approaches
entioned above, we employ clustering here to tackle a radically
ifferent problem, namely that of speeding up the computation
f conformance checking. This idea is closely related to the notion
f sampling introduced in [55], where conformance checking of
n entire log is simplified to conformance checking of a selected
ubset of traces. In [55], this selection is based on statistical
elevance, with the goal of speeding up the conformance checking
omputation by conducting it only on a portion of the entire log,
hile obtaining a good approximation of the exact result that
ould be obtained by exhaustively checking all the traces in the

og. Our approach, instead, is exact: clusters are used to group
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ogether traces with the same alignment cost, and alignments of
races from the same cluster can be computed from one another
n linear time. We also provide (formal) guarantees that the
onformance checking result computed over the representative
races faithfully reconstructs the one obtained for the whole log.

. Conclusions

We have introduced CoCoMoT, a foundational framework
quipped with a proof-of-concept, feasible implementation for
lignment-based conformance checking of multi-perspective pro-
esses. Besides the several technical results provided in the paper,
he core contribution provided by CoCoMoT is to connect the area
f (data-aware) conformance checking with that of declarative
roblem solving via SMT. This comes with a great potential
or homogeneously tackling a plethora of related problems in
single framework with a solid theoretical basis and several

tate-of-the-art algorithmic techniques.
The CoCoMoT approach, due to its modularity, readily lends

tself to further tasks related to the analysis of data-aware pro-
esses. First, following the idea of trace clustering based on multi-
lignments from [18,20], one can use CoCoMoT to partition a log
f DPN traces, as an alternative to the already employed cluster-
ng technique. Then, CoCoMoT can be also used in model repair
asks: given a set of traces, multi-alignments can be leveraged
o as to minimize the sum of the trace distances, while replacing
ome parameter of the DPN by a variable (e.g., the threshold value
n a guard). After that, from the satisfying assignment returned
y CoCoMoT we obtain the value for this parameter that fits the
bserved behavior best.
As constraints (ϕinit )–(ϕdata) symbolically describe a process

un of bounded length, our encoding supports bounded model
hecking. Thus one could also implement scenario-based confor-
mance checking, that, for a given trace, finds the best-matching
process run that satisfies additional constraints, such as that
certain data values are not exceeded.

While in this paper we consider simple linear arithmetics for
encoding cost functions in SMT, more complex theories, as well
as their combinations, can be considered, thanks to the generality
offered by SMT techniques. As discussed in Section 3.5, one can
capture more sophisticated cost functions involving background
knowledge coming from additional data sources or correctly ad-
dressing privacy related aspects (where one typically needs to
employ uninterpreted functions). Thanks to the aforementioned
modularity, our encoding could be readily extended with such
features. All this provides additional motivation for the use of
SMT as the operational counterpart of the framework and will be
studied in more detail in future work.
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