1,418 research outputs found
Optomechanically induced transparency
Coherent interaction of laser radiation with multilevel atoms and molecules
can lead to quantum interference in the electronic excitation pathways. A
prominent example observed in atomic three-level-systems is the phenomenon of
electromagnetically induced transparency (EIT), in which a control laser
induces a narrow spectral transparency window for a weak probe laser beam. The
concomitant rapid variation of the refractive index in this spectral window can
give rise to dramatic reduction of the group velocity of a propagating pulse of
probe light. Dynamic control of EIT via the control laser enables even a
complete stop, that is, storage, of probe light pulses in the atomic medium.
Here, we demonstrate optomechanically induced transparency (OMIT)--formally
equivalent to EIT--in a cavity optomechanical system operating in the resolved
sideband regime. A control laser tuned to the lower motional sideband of the
cavity resonance induces a dipole-like interaction of optical and mechanical
degrees of freedom. Under these conditions, the destructive interference of
excitation pathways for an intracavity probe field gives rise to a window of
transparency when a two-photon resonance condition is met. As a salient feature
of EIT, the power of the control laser determines the width and depth of the
probe transparency window. OMIT could therefore provide a new approach for
delaying, slowing and storing light pulses in long-lived mechanical excitations
of optomechanical systems, whose optical and mechanical properties can be
tailored in almost arbitrary ways in the micro- and nano-optomechanical
platforms developed to date
Beyond "the Relationship between the Individual and Society": broadening and deepening relational thinking in group analysis
The question of ‘the relationship between the individual and society’ has troubled group analysis since its inception. This paper offers a reading of Foulkes that highlights the emergent, yet evanescent, psychosocial ontology in his writings, and argues for the development of a truly psychosocial group analysis, which moves beyond the individual/society dualism. It argues for a shift towards a language of relationality, and proposes new theoretical resources for such a move from relational sociology, relational psychoanalysis and the ‘matrixial thinking’ of Bracha Ettinger which would broaden and deepen group analytic understandings of relationality
Exocomet signatures around the A-shell star Leo?
We present an intensive monitoring of high-resolution spectra of the Ca {\sc
ii} K line in the A7IV shell star Leo at very short (minutes, hours),
short (night to night), and medium (weeks, months) timescales. The spectra show
remarkable variable absorptions on timescales of hours, days, and months. The
characteristics of these sporadic events are very similar to most that are
observed toward the debris disk host star Pic, which are commonly
interpreted as signs of the evaporation of solid, comet-like bodies grazing or
falling onto the star. Therefore, our results suggest the presence of solid
bodies around Leo. To our knowledge, with the exception of Pic,
our monitoring has the best time resolution at the mentioned timescales for a
star with events attributed to exocomets. Assuming the cometary scenario and
considering the timescales of our monitoring, our results indicate that
Leo presents the richest environment with comet-like events known to date,
second only to Pic.Comment: A&A letters, proof-correcte
DZ Cha: a bona fide photoevaporating disc
DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright
protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line
and infrared spectral energy distribution suggest that DZ Cha may be a
photoevaporating disc. We aim to analyse the DZ Cha star + disc system to
identify the mechanism driving the evolution of this object. We have analysed
three epochs of high resolution optical spectroscopy, photometry from the UV up
to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry
observations of DZ Cha. Combining our analysis with previous studies we find no
signatures of accretion in the \Ha line profile in nine epochs covering a
time baseline of years. The optical spectra are dominated by
chromospheric emission lines, but they also show emission from the forbidden
lines [SII] 4068 and [OI] 6300 that indicate a disc outflow. The
polarized images reveal a dust depleted cavity of au in radius and two
spiral-like features, and we derive a disc dust mass limit of
M_\mathrm{dust}
80 \MJup) companions are detected down to 0\farcs07 ( au,
projected). The negligible accretion rate, small cavity, and forbidden line
emission strongly suggests that DZ Cha is currently at the initial stages of
disc clearing by photoevaporation. At this point the inner disc has drained and
the inner wall of the truncated outer disc is directly exposed to the stellar
radiation. We argue that other mechanisms like planet formation or binarity
cannot explain the observed properties of DZ Cha. The scarcity of objects like
this one is in line with the dispersal timescale ( yr) predicted
by this theory. DZ Cha is therefore an ideal target to study the initial stages
of photoevaporation.Comment: A&A in press, language corrections include
α-chloralose poisoning in a cat
A five-year-old domestic cat with acute unexplainable neurological signs was presented for postmortem examination. Clinically, the cat showed an acute onset of ataxia, depressed mentation and continuous twitching/ seizure activity in the morning after having been outside overnight. Despite immediate treatment, the cat# progressed within 24 hours to a comatose state, opisthotonus and severe miosis unresponsive to light. Given a poor prognosis, euthanasia was elected. Gross findings were disappointing and consisted of a nonspecific lung oedema and congested lungs and spleen. Surprisingly, within the stomach and intestines, fragments of cockshafers were found. Histological examination confirmed the gross findings and additionally showed evidence of mild brain oedema, but failed to identify a cause for the severe clinical signs. In a final attempt to solve the case, a urine sample was tested for toxic substances and it was found to contain a significant amount of α-chloralose. This finding was unexpected
Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector
Cosmic rays extensive air showers (EAS) are associated with transient radio
emission, which could provide an efficient new detection method of high energy
cosmic rays, combining a calorimetric measurement with a high duty cycle. The
CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is
investigating this phenomenon in the 10^17 eV region. One challenging point is
the understanding of the radio emission mechanism. A first observation
indicating a linear relation between the electric field produced and the cross
product of the shower axis with the geomagnetic field direction has been
presented (B. Revenu, this conference). We will present here other strong
evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz,
Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde
Multivariate cluster point process to quantify and explore multi-entity configurations: Application to biofilm image data
Clusters of similar or dissimilar objects are encountered in many fields.
Frequently used approaches treat the central object of each cluster as latent.
Yet, often objects of one or more types cluster around objects of another type.
Such arrangements are common in biomedical images of cells, in which nearby
cell types likely interact. Quantifying spatial relationships may elucidate
biological mechanisms. Parent-offspring statistical frameworks can be usefully
applied even when central objects (parents) differ from peripheral ones
(offspring). We propose the novel multivariate cluster point process (MCPP) to
quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used
approaches, the MCPP exploits locations of the central parent object in
clusters. It accounts for possibly multilayered, multivariate clustering. The
model formulation requires specification of which object types function as
cluster centers and which reside peripherally. If such information is unknown,
the relative roles of object types may be explored by comparing fit of
different models via the deviance information criterion (DIC). In simulated
data, we compared DIC of a series of models; the MCPP correctly identified
simulated relationships. It also produced more accurate and precise parameter
estimates than the classical univariate Neyman-Scott process model. We also
used the MCPP to quantify proposed configurations and explore new ones in human
dental plaque biofilm image data. MCPP models quantified simultaneous
clustering of Streptococcus and Porphyromonas around Corynebacterium and of
Pasteurellaceae around Streptococcus and successfully captured hypothesized
structures for all taxa. Further exploration suggested the presence of
clustering between Fusobacterium and Leptotrichia, a previously unreported
relationship
Polar Smectic Films
We report on a new experimental procedure for forming and studying polar
smectic liquid crystal films. A free standing smectic film is put in contact
with a liquid drop, so that the film has one liquid crystal/liquid interface
and one liquid crystal/air interface. This polar environment results in changes
in the textures observed in the film, including a boojum texture and a
previously unobserved spiral texture in which the winding direction of the
spiral reverses at a finite radius from its center. Some aspects of these
textures are explained by the presence of a Ksb term in the bulk elastic free
energy density that favors a combination of splay and bend deformations.Comment: 4 pages, REVTeX, 3 figures, submitted to PR
- …