860 research outputs found

    Modelling study of the impact of deep convection on the utls air composition - Part I: Analysis of ozone precursors

    Get PDF
    International audienceThe aim of this work is to study the local impact on the upper troposphere/lower stratosphere air composition of an extreme deep convective system. For this purpose, we performed a simulation of a convective cluster composed of many individual deep convective cells that occurred near Bauru (Brazil). The simulation is performed using the 3-D mesoscale model RAMS coupled on-line with a chemistry model. The comparisons with meteorological measurements show that the model produces meteorological fields generally consistent with the observations. The present paper (part I) is devoted to the analysis of the ozone precursors (CO, NOx and non-methane volatile organic compounds) and HOx in the UTLS. The simulation results show that the distribution of CO with altitude is closely related to the upward convective motions and consecutive outflow at the top of the convective cells leading to a bulge of CO between 7 km altitude and the tropopause (around 17 km altitude). The model results for CO are consistent with satellite-borne measurements at 700 hPa. The simulation also indicates enhanced amounts of NOx up to 2 ppbv in the 7–17 km altitude layer mainly produced by the lightning associated with the intense convective activity. For insoluble non-methane volatile organic compounds, the convective activity tends to significantly increase their amount in the 7–17 km layer by dynamical effects. During daytime in the presence of lightning NOx, this bulge is largely reduced in the upper part of the layer for reactive species (e.g. isoprene, ethene) because of their reactions with OH that is increased on average during daytime. Lightning NOx also impacts on the oxydizing capacity of the upper troposphere by reducing on average HOx, HO2, H2O2 and organic hydroperoxides. During the simulation time, the impact of convection on the air composition of the lower stratosphere is negligible for all ozone precursors although several of the simulated convective cells nearly reach the tropopause. There is no significant transport from the upper troposphere to the lower stratosphere, the isentropic barrier not being crossed by convection. The impact of the increase of ozone precursors and HOx in the upper troposphere on the ozone budget in the LS is discussed in part II of this series of papers

    Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods.

    Get PDF
    Nickel zinc ferrite nanoparticles, Ni1−xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method

    Modelling study of the impact of deep convection on the UTLS air composition – Part 2: Ozone budget in the TTL

    Get PDF
    International audienceIn this second part of a series of two papers which aim to study the local impact of deep convection on the chemical composition of the Upper Troposphere and Lower Stratosphere (UTLS), we focus on ozone simulation results using a mesoscale model that includes on-line chemistry. A severe convective system observed on 8 February 2001 at Bauru, Brazil, is studied. This unorganised convective system is composed of several convective cells that interact with each other. We show that there is an increase in the ozone concentration in the tropical transitional layer (TTL) in the model during this event, which is compatible with ozone sonde observations from Bauru during the 2004 convective season. The model horizontal variability of ozone in this layer is comparable with the variability of the ozone sonde observations in the same area. The calculation of the ozone budget in the TTL during a 24 h period in the area of the convective system shows that the ozone behaviour in this layer is mainly driven by dynamics. The horizontal flux at a specific time is the main contribution in the budget, since it drives the sign and the magnitude of the total ozone flux. However, when averaged over the 24 h period, the horizontal flux is smaller than the vertical fluxes, and leads to a net decrease of ozone molecule number of 23%. The upward motions at the bottom of the TTL, related to the convection activity is the main contributor to the budget over the 24h period since it can explain 70% of the total ozone increase in the TTL, while the chemical ozone production inside the TTL is estimated to be 29% of the ozone increase, if NOx production by lightning (LNOx) is taken into account. It is shown that downward motion at the tropopause induced by gravity waves generated by deep convection is non negligible in the TTL ozone budget, since it represents 24% of the ozone increase. The flux analysis shows the importance of the vertical contributions during the life time of the convective event (about 8 h). The TTL ozone is driven out of the domain horizontally by the convective outflow during this period, limiting the ozone increase in this layer

    Modelling study of the impact of deep convection on the UTLS air composition – Part II: Ozone budget in the TTL avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France

    Get PDF
    International audienceIn this second part of a series of two papers which aim to study the local impact of deep convection on the chemical composition of the Upper Troposphere and Lower Stratosphere (UTLS), we focus on ozone simulation results using a mesoscale model that includes on-line chemistry. A severe convective system observed on 8 February 2001 at Bauru, Brazil, is studied. We show that there is an increase in the ozone concentration in the tropical transitional layer (TTL) in the model during this event, which is compatible with ozone sonde observations from Bauru during the 2004 convective season. The model horizontal variability of ozone in this layer is comparable with the variability of the ozone sonde observations in the same area. The calculation of the ozone budget in the TTL shows that the ozone behaviour in this layer is mainly driven by dynamics. The upward motions at the bottom of the TTL, related to the convection activity is the main contributor to the budget since it can explain 75% of the total ozone increase in the TTL, while the chemical ozone production inside the TTL is estimated to be 23.5% of the ozone increase if NOx production by lightning (LNOx) is taken into account. It is shown that downward motions at the tropopause induced by gravity waves generated by deep convection are non negligible in the TTL ozone budget, since it represents 11% of the ozone increase. The correlation between the convection activity and the vertical flux at 13 km, the vertical flux at 17 km, and the chemical production is brought to the fore in this simulation

    Delocalization of slowly damped eigenmodes on Anosov manifolds

    Full text link
    We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a "strip" of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.Comment: 28 pages; compared with version 1, minor modifications, add two reference

    Boojums in Rotating Two-Component Bose-Einstein Condensates

    Full text link
    A boojum is a topological defect that can form only on the surface of an ordered medium such as superfluid 3^3He and liquid crystals. We study theoretically boojums appearing between two phases with different vortex structures in two-component BECs where the intracomponent interaction is repulsive in one phase and attractive in the other. The detailed structure of the boojums is revealed by investigating its density distribution, effective superflow vorticity and pseudospin texture.Comment: 4 pages, 4 figure

    Ti–Si–C thin films produced by magnetron sputtering : correlation between physical properties, mechanical properties and tribological behavior

    Get PDF
    Ti–Si–C thin films were deposited onto silicon, stainless steel and high-speed steel substrates by magnetron sputtering, using different chamber configurations. The composition of the produced films was obtained by Electron Probe Micro-Analysis (EPMA) and the structure by X-ray diffraction (XRD). The hardness and residual stresses were obtained by depth-sensing indentation and substrate deflection measurements (using Stoney’s equation), respectively. The tribological behavior of the produced films was studied by pin-on-disc. The increase of the concentration of non-metallic elements (carbon and silicon) caused significant changes in their properties. Structural analysis revealed the possibility of the coexistence of different phases in the prepared films, namely Ti metallic phase ( alpha-Ti or beta-Ti) in the films with higher Ti content. The coatings with highest carbon contents, exhibited mainly a sub-stoichiometric fcc NaCl TiC-type structure. These structural changes were also confirmed by resistivity measurements, whose values ranged from 10E3 Ohm/sq for low non-metal concentration, up to 10E6 Ohm /sq for the highest metalloid concentration. Astrong increase of hardness and residual stresses was observed with the increase of the non-metal concentration in the films. The hardness (H) values ranged between 11 and 27 GPa, with a clear dependence on both crystalline structure and composition features. Following the mechanical behavior, the tribological results showed similar trends, with both friction coefficients and wear revealing also a straight correlation with the composition and crystalline structure of the coatings

    Modelling the reversible uptake of chemical species in the gas phase by ice particles formed in a convective cloud

    Get PDF
    The present paper is a preliminary study preparing the introduction of reversible trace gas uptake by ice particles into a 3-D cloud resolving model. For this a 3-D simulation of a tropical deep convection cloud was run with the BRAMS cloud resolving model using a two-moment bulk microphysical parameterization. Trajectories within the convective clouds were computed from these simulation outputs along which the variations of the pristine ice, snow and aggregate mixing ratios and concentrations were extracted. The reversible uptake of 11 trace gases by ice was examined assuming applicability of Langmuir isotherms using recently evaluated (IUPAC) laboratory data. The results show that ice uptake is only significant for HNO<sub>3</sub>, HCl, CH<sub>3</sub>COOH and HCOOH. For H<sub>2</sub>O<sub>2</sub>, using new results for the partition coefficient results in significant partitioning to the ice phase for this trace gas also. It was also shown that the uptake is largely dependent on the temperature for some species. The adsorption saturation at the ice surface for large gas mixing ratios is generally not a limiting factor except for HNO<sub>3</sub> and HCl for gas mixing ratio greater than 1 ppbv. For HNO<sub>3</sub>, results were also obtained using a trapping theory, resulting in a similar order of magnitude of uptake, although the two approaches are based on different assumptions. The results were compared to those obtained using a BRAMS cloud simulation based on a single-moment microphysical scheme instead of the two moment scheme. We found similar results with a slightly more important uptake when using the single-moment scheme which is related to slightly higher ice mixing ratios in this simulation. The way to introduce these results in the 3-D cloud model is discussed

    Ambient Air Pollution, Social Inequalities and Asthma Exacerbation in Greater Strasbourg (France) Metropolitan Area: the PAISA Study

    Get PDF
    International audienceThe socio-economic status (SES) of populations has an influence on the incidence or mortality rates of numerous health outcomes, among which respiratory diseases (Prescott et al., 2003; Ellison-Loschmann et al., 2007). Considering asthma, the possible contribution of SES to overall prevalence –regardless of asthma severity-, remains controversial in industrialized countries. Several studies indicate that allergic asthma is more prevalent in more well-off populations whereas the non-allergic forms of asthma are more common in the deprived ones (Cesaroni et al., 2003; Blanc et al., 2006). On the other hand, severe asthma whatever its etiology appears to be more frequent in the latter populations, as compared to the more affluent (Basagana et al., 2004). Risk factors for exacerbations (e.g., passive smoking (Wright Subramanian, 2007), psychosocial stress (Gold & Wright, 2005), cockroach allergens (Kitch et al., 2000), and suboptimal compliance with anti-inflammatory medication (Gottlieb et al., 1995)) are generally more common among people with asthma and low SES than their better-off counterparts. These observations support the hypothesis that some factors more present in deprived populations contribute to asthma exacerbation (Mielck et al., 1996)

    Assessment of the potential in vivo ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum

    Get PDF
    Because of their specific properties (mechanical, electrical, etc), carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxic potential of CNTs in the amphibian larvae (Ambystoma mexicanum). Acute toxicity and genotoxicity were analysed after 12 days of exposure in laboratory conditions. The genotoxic effects were analysed by scoring the micronucleated erythrocytes in the circulating blood of the larvae according to the French standard micronucleus assay. The results obtained in the present study demonstrated that CNTs are neither acutely toxic nor genotoxic to larvae whatever the CNTs concentration in the water, although black masses of CNTs were observed inside the gut. In the increasing economical context of CNTs, complementary studies must be undertaken, especially including mechanistic and environmental investigations
    corecore