1,632 research outputs found

    La adherencia al tratamiento en pacientes crónicos

    Get PDF
    La adherencia al tratamiento en enfermedades crónicas es esencial por las implicaciones médicas, sociales y familiares que tiene. El objetivo de este trabajo es analizar los factores relacionados con la adherencia con objeto de llevar a cabo estrategias generales en Atención Primaria para mejorarla. Se realiza un análisis de la adherencia terapéutica atendiendo a sus factores; personales, actitud a la medicación y enfermedad, relación médico-paciente y a los factores sociales a través de la administración de un cuestionario a 30 personas con enfermedades crónicas. Resultados: Existe una relación directa entre los factores y la adherencia al tratamiento y así mismo, solo la polimedicación se relaciona directamente con la adherencia. Finalmente, se plantean medidas para aplicar en Atención Primaria con objeto de mejorarla.Grado en Medicin

    Pautas de validez de los contenidos en las clases de ciencias: una aproximación al problema de los criterios de validez del conocimiento escolar

    Get PDF
    This it is a document with which one looks for to contribute to the debate with respect to which they are the criteria from which one affirms that something is or nonvalid in the scholastic processes, from the pointof view of the professors. The support of this writing becomes from the results of two investigations (Martinez, 2000; Martinez, 2005)4, in individual exposes the study of case of professor Rosa, in whom it appears the category criteria of validity, like of great potentiality in the Construction of the scholastic knowledge in the classes of sciences.Este es un artículo se busca aportar al debate respecto a cuáles son los criterios desde los que se afirma que algo es o no válido en los procesos escolares, desde el punto de vista de los profesores. El soporte de este escrito se hace desde los resultados de dos investigaciones (Martínez, 2000; Martínez, 2005),3 en particular se expone el estudio de caso de la profesora Rosa, en el que aparece la categoría criterios de validez, como de gran potencialidad en la construcción del conocimiento escolar en las clases de ciencias

    Role of light chain clearance in the recovery of renal function in multiple myeloma: another point of view

    Get PDF
    Acute kidney injury; Hemodialysis; Multiple myelomaLesió renal aguda; Hemodiàlisi; Mieloma múltipleLesión renal aguda; Hemodiálisis; Mieloma múltipleBackground Acute kidney injury (AKI) in patients with multiple myeloma (MM) requiring renal replacement treatment (RRT) is associated with high morbidity and mortality. Early reduction of serum free light chains (FLC) using both targeted therapy against MM and intensive hemodialysis (IHD) may improve renal outcomes. We evaluated the effectiveness of two different RRT techniques on renal recovery in an MM patient population: standard dialysis procedure vs IHD with either polymethylmethacrylate (PMMA) or hemodiafiltration with endogenous reinfusion (HFR). Methods This was a multicentric retrospective study with severe AKI related to MM, between 2011 and 2018. Twenty-five consecutive patients with AKI secondary to MM requiring RRT were included. Patients that underwent IHD received six dialysis sessions per week during the first 14 days (PMMA vs HFR). All patients were diagnosed with de novo MM or first relapsed MM. Primary outcome was renal recovery defined as dialysis-free at 6 months follow-up. Results A total of 25 patients were included. Seventeen patients received IHD and eight standard dialysis. All patients were treated with targeted therapy, 84% bortezomib-based. Of the 25 patients included, 14 (56%) became dialysis independent. We observed a higher proportion of patients who received IHD in the group who recovered kidney function compared with those who remained in HD (92.9% vs 36.4%, P = .007). In our study, the use of IHD to remove FLC had a statistically significant association with renal recovery compared with the standard dialysis group (P = .024). Conclusion Early reduction of FLC with IHD as an adjuvant treatment along with MM-targeted therapy may exert a positive impact on renal recovery

    Collective Intelligence to Find Solutions to the Challenges Posed by the Sustainable Development Goals

    Get PDF
    The implementation of the United Nations (UN) Sustainable Development Goals (SDGs) presents a vast and intricate array of challenges, including the establishment of governance systems that engage all societal actors, particularly nongovernmental entities and youth, in proposing solutions and decision-making. This article investigates the potential of collective intelligence as a tool within citizen science to create solutions for SDG-related challenges and to establish or enhance necessary governance mechanisms. We detail a collective intelligence experiment conducted during the UN Climate Change Conference 2019 (COP25; Madrid, December 2–13), which aimed to generate a prioritised list of actions addressing SDG 6, Water and Sanitation and SDG 13, Climate Action. The experiment involved 1,253 students aged 15 to 17 who proposed, modified, and prioritised 14,517 ideas using an online platform created by Kampal, a spin-off of the University of Zaragoza. We discuss: a) participation protocols following citizen science methodologies; b) the platform description; c) results concerning the participation process, the tool’s effectiveness in collectively extracting the best solutions, and the quality of the generated proposals; and d) enhancements and new research directions for using citizen science and collective intelligence to tackle SDG-related challenges in a collaborative and participatory way

    Measurements of tt¯ spin correlations and top quark polarization using dilepton final states in pp collisions at √s=8  TeV

    Get PDF
    et al.Measurements of the top quark-antiquark (tt¯) spin correlations and the top quark polarization are presented for tt¯ pairs produced in pp collisions at √s=8  TeV. The data correspond to an integrated luminosity of 19.5  fb−1 collected with the CMS detector at the LHC. The measurements are performed using events with two oppositely charged leptons (electrons or muons) and two or more jets, where at least one of the jets is identified as originating from a bottom quark. The spin correlations and polarization are measured from the angular distributions of the two selected leptons, both inclusively and differentially, with respect to the invariant mass, rapidity, and transverse momentum of the tt¯ system. The measurements are unfolded to the parton level and found to be in agreement with predictions of the standard model. A search for new physics in the form of anomalous top quark chromo moments is performed. No evidence of new physics is observed, and exclusion limits on the real part of the chromo-magnetic dipole moment and the imaginary part of the chromo-electric dipole moment are evaluated.Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, Contract No. C-1845.Peer Reviewe

    Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at √ = 13 TeV

    Get PDF
    A search is presented for a right-handed W boson (WR) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or µµ) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb−1. The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of WR production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses mN equal to half the WR mass mWR (mN = 0.2 TeV), mWR is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the WR mass to date.We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and t other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MCIN/AE and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science — EOS” — be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy — EXC 2121 “Quantum Universe” — 390833306, and under project number 400140256 — GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, projects no. 14.W03.31.0026 and no. FSWW-2020-0008, and the Russian Foundation for Basic Research, project No.19-42-703014 (Russia); MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.)

    Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at √ = 13 TeV

    Get PDF
    A measurement of the forward-backward asymmetry of pairs of oppositely charged leptons (dimuons and dielectrons) produced by the Drell-Yan process in proton-proton collisions is presented. The data sample corresponds to an integrated luminosity of 138 fb−1 collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV. The asymmetry is measured as a function of lepton pair mass for masses larger than 170 GeV and compared with standard model predictions. An inclusive measurement across both channels and the full mass range yields an asymmetry of 0.612 ± 0.005 (stat) ± 0.007 (syst). As a test of lepton flavor universality, the difference between the dimuon and dielectron asymmetries is measured as well. No statistically significant deviations from standard model predictions are observed. The measurements are used to set limits on the presence of additional gauge bosons. For a Z′ boson in the sequential standard model the observed (expected) 95% confidence level lower limit on the Z′ mass is 4.4 TeV (3.7 TeV)We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 765710 and 824093 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Of-fice; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT- Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science — EOS” — be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Re- public; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy— EXC 2121 “Quantum Universe” — 390833306, and under project number 400140256 — GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholar- ship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 0723-2020-0041 (Russia); the Programa Es- tatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachada- pisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (U.S.A.)
    corecore