258 research outputs found
Bacterial Flora of Seven Species of Fish Collected at Rongelap and Eniwetok Atolls
A very extensive literature exists concerning
the normal bacterial flora of marine fish
species common to the northern ocean areas, i.e.,
the North Sea (Stewart, 1932; Aschehoug and
Vesterhus, 1943; Reay and Shewan, 1949; Liston,
1956, 1957; Georgala, 1958), the North Atlantic
(Reed and Spence, 1929; Gibbons, 1934a,
1934b; Dyer, 1947), and the North Pacific
(Hunter, 1920; Fellers, 1926; Snow and Beard,
1939; Kiser, 1944; Kiser and Beckwith, 1942,
1944; Liston, 1959). These studies of the aerobic
heterotrophic bacterial flora found on a number
of different species of northern ocean fishes
have shown that, while the generic distribution
of the bacteria associated with freshly caught
marine fish may vary quantitatively, the following
genera predominate fairly consisteritly:
Pseudomonas, Achromobacter, Flavobacterium,
and Micrococcus. The genera Proteus, Sarcina,
Bacillus, Corynebacterium, and Serratia are encountered
less often. Some investigators have
discussed the biochemistry of the organisms isolated
from marine fish (viz., Thjotte and Somme,
1943) but most of the physiology and biochemistry
is limited to only a few properties studied
for classifying the microorganisms. A somewhat
more extensive discussion of the anabolic and
catabolic aspects of the bacterial groups found
on North Pacific fish has been given by Colwell
(1961) and Liston and Colwell (1962)
Diagnostic approach for monitoring hydroclimatic conditions related to emergence of West Nile virus in West Virginia
West Nile virus (WNV), mosquito-borne and water-based disease, is increasingly a global threat to public health. Since its appearance in the northeastern United States in 1999, WNV has since been reported in several states in the continental United States. The objective of this study is to highlight role of hydroclimatic processes estimated through satellite sensors in capturing conditions for emergence of the vectors in historically disease free regions. We tested the hypothesis that an increase in surface temperature, in combination with intensification of vegetation, and enhanced precipitation, lead to conditions favorable for vector (mosquito) growth. Analysis of land surface temperature (LST) pattern shows that temperature values \u3e16°C, with heavy precipitation, may lead to abundance of the mosquito population. This hypothesis was tested in West Virginia where a sudden epidemic of WNV infection was reported in 2012. Our results emphasize the value of hydroclimatic processes estimated by satellite remote sensing, as well as continued environmental surveillance of mosquitoes, because when a vector-borne infection like WNV is discovered in contiguous regions, the risk of spread of WNV mosquitoes increase at points where appropriate hydroclimatic processes intersect with the vector niche
Oral Metallo-Beta-Lactamase Protects the Gut Microbiome From Carbapenem-Mediated Damage and Reduces Propagation of Antibiotic Resistance in Pigs
Antibiotics can damage the gut microbiome, leading to serious adventitious infections and emergence of antibiotic resistant pathogens. Antibiotic inactivation in the GI tract represents a strategy to protect colonic microbiota integrity and reduce antibiotic resistance. Clinical utility of this approach was established when SYN-004 (ribaxamase), an orally-administered beta-lactamase, was demonstrated to degrade ceftriaxone in the GI tract and preserve the gut microbiome. Ribaxamase degrades penicillins and cephalosporin beta-lactams, but not carbapenems. To expand this prophylactic approach to include all classes of beta-lactam antibiotics, a novel carbapenemase, formulated for oral administration, SYN-006, was evaluated in a porcine model of antibiotic-mediated gut dysbiosis. Pigs (20 kg, n = 16) were treated with the carbapenem, ertapenem (ERT), (IV, 30 mg/kg, SID) for 4 days and a cohort (n = 8) also received SYN-006 (PO, 50 mg, QID), beginning the day before antibiotic administration. ERT serum levels were not statistically different in ERT and ERT + SYN-006 groups, indicating that SYN-006 did not alter systemic antibiotic levels. Microbiomes were evaluated using whole genome shotgun metagenomics analyses of fecal DNA collected prior to and after antibiotic treatment. ERT caused significant changes to the gut microbiome that were mitigated in the presence of SYN-006. In addition, SYN-006 attenuated emergence of antibiotic resistance, including encoded beta-lactamases and genes conferring resistance to a broad range of antibiotics such as aminoglycosides and macrolides. SYN-006 has the potential to become the first therapy designed to protect the gut microbiome from all classes of beta-lactam antibiotics and reduce emergence of carbapenem-resistant pathogens
Characterization of the Microbiome at the World’s Largest Potable Water Reuse Facility
Conventional water resources are not sufficient in many regions to meet the needs of growing populations. Due to cyclical weather cycles, drought, and climate change, water stress has increased worldwide including in Southern California, which serves as a model for regions that integrate reuse of wastewater for both potable and non-potable use. The Orange County Water District (OCWD) Advanced Water Purification Facility (AWPF) is a highly engineered system designed to treat and produce up to 100 million gallons per day (MGD) of purified water from a municipal wastewater source for potable reuse. Routine facility microbial water quality analysis is limited to standard indicators at this and similar facilities. Given recent advances in high throughput DNA sequencing techniques, complete microbial profiling of communities in water samples is now possible. By using 16S/18S rRNA gene sequencing, metagenomic and metatranscriptomic sequencing coupled to a highly accurate identification method along with 16S rRNA gene qPCR, we describe a detailed view of the total microbial community throughout the facility. The total bacterial load of the water at stages of the treatment train ranged from 3.02 × 106 copies in source, unchlorinated wastewater feed to 5.49 × 101 copies of 16S rRNA gene/mL after treatment (consisting of microfiltration, reverse osmosis, and ultraviolet/advanced oxidation). Microbial diversity and load decreased by several orders of magnitude after microfiltration and reverse osmosis treatment, falling to almost non-detectable levels that more closely resembled controls of molecular grade laboratory water than the biomass detected in the source water. The presence of antibiotic resistance genes and viruses was also greatly reduced. Overall, system design performance was achieved, and comprehensive microbial community analysis was found to enable a more complete characterization of the water/wastewater microbial signature
Population Vulnerability to Biannual Cholera Outbreaks and Associated Macro-Scale Drivers in the Bengal Delta
The highly populated floodplains of the Bengal Delta have a long history of endemic and epidemic cholera outbreaks, both coastal and inland. Previous studies have not addressed the spatio-temporal dynamics of population vulnerability related to the influence of underlying large-scale processes. We analyzed spatial and temporal variability of cholera incidence across six surveillance sites in the Bengal Delta and their association with regional hydroclimatic and environmental drivers. More specifically, we use salinity and flood inundation modeling across the vulnerable districts of Bangladesh to test earlier proposed hypotheses on the role of these environmental variables. Our results show strong influence of seasonal and interannual variability in estuarine salinity on spring outbreaks and inland flooding on fall outbreaks. A large segment of the population in the Bengal Delta floodplains remain vulnerable to these biannual cholera transmission mechanisms that provide ecologic and environmental conditions for outbreaks over large geographic regions
Environmental Factors Influencing Epidemic Cholera
Cholera outbreak following the earthquake of 2010 in Haiti has reaffirmed that the disease is a major public health threat. Vibrio cholerae is autochthonous to aquatic environment, hence, it cannot be eradicated but hydroclimatology-based prediction and prevention is an achievable goal. Using data from the 1800s, we describe uniqueness in seasonality and mechanism of occurrence of cholera in the epidemic regions of Asia and Latin America. Epidemic regions are located near regional rivers and are characterized by sporadic outbreaks, which are likely to be initiated during episodes of prevailing warm air temperature with low river flows, creating favorable environmental conditions for growth of cholera bacteria. Heavy rainfall, through inundation or breakdown of sanitary infrastructure, accelerates interaction between contaminated water and human activities, resulting in an epidemic. This causal mechanism is markedly different from endemic cholera where tidal intrusion of seawater carrying bacteria from estuary to inland regions, results in outbreaks
Health‐Damaging Climate Events Highlight the Need for Interdisciplinary, Engaged Research
In 2023 human populations experienced multiple record‐breaking climate events, with widespread impacts on human health and well‐being. These events include extreme heat domes, drought, severe storms, flooding, and wildfires. Due to inherent lags in the climate system, we can expect such extremes to continue for multiple decades after reaching net zero carbon emissions. Unfortunately, despite these significant current and future impacts, funding for research in climate and health has lagged behind that for other geoscience and biomedical research. While some initial efforts from funding agencies are evident, there is still a significant need to increase the resources available for multidisciplinary research in the face of this issue. As a group of experts at this important intersection, we call for a more concerted effort to encourage interdisciplinary and policy‐relevant investigations into the detrimental health effects of continued climate change
- …