28 research outputs found

    Recurrent, founder and hypomorphic variants contribute to the genetic landscape of Joubert syndrome

    Get PDF
    Background Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases.Methods While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in similar to 550 European patients with JS and compared them with controls (>15 000 Italian plus gnomAD), and with an independent cohort of similar to 600 JS probands from the USA.Results All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G>T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T>G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes. Two recurrent variants (MKS1 c.1476T>G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T>G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote.Conclusion This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants

    Clinical and molecular description of the first Italian cohort of 33 subjects with hypophosphatasia

    Get PDF
    IntroductionHypophosphatasia (HPP) is a rare genetic disease caused by inactivating variants of the ALPL gene. Few data are available on the clinical presentation in Italy and/or on Italian HPP surveys.MethodsThere were 30 suspected HPP patients recruited from different Italian tertiary cares. Biological samples and related clinical, biochemical, and anamnestic data were collected and the ALPL gene sequenced. Search for large genomic deletions at the ALPL locus (1p36) was done. Phylogenetic conservation and modeling were applied to infer the effect of the variants on the protein structure.ResultsThere were 21 ALPL variants and one large genomic deletion found in 20 out of 30 patients. Unexpectedly, NGS-driven differential diagnosis allowed uncovering three hidden additional HPP cases, for a total of 33 HPP subjects. Eight out of 24 coding variants were novel and classified as “pathogenic”, “likely pathogenic”, and “variants of uncertain significance”. Bioinformatic analysis confirmed that all the variants strongly destabilize the homodimer structure. There were 10 cases with low ALP and high VitB6 that resulted negative to genetic testing, whereas two positive cases have an unexpected normal ALP value. No association was evident with other biochemical/clinical parameters.DiscussionWe present the survey of HPP Italian patients with the highest ALPL mutation rate so far reported and confirm the complexity of a prompt recognition of the syndrome, mostly for HPP in adults. Low ALP and high VitB6 values are mandatory for the genetic screening, this latter remaining the gold standard not only to confirm the clinical diagnosis but also to make differential diagnosis, to identify carriers, to avoid likely dangerous therapy in unrecognized cases

    Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    Get PDF
    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability

    Body Composition in Adolescent PKU Patients: Beyond Fat Mass

    No full text
    There is a lack of evidence on the impact on body composition of high protein intake and types of protein substitutes in PKU patients—particularly in adolescents, who are more inclined to dietary transgressions. In this observational, cross-sectional study, PKU patients were observed during prepubertal age (p) or after the pubertal spurt (P), assessing body composition and bone quality and correlating these parameters with dietary compliance and types of protein substitutes. Anthropometric and dietary data were evaluated together with bioelectrical impedance analysis (BIA), quantitative ultrasound (QUS) and branched-chain amino acids (BCAAs). A total of 36 patients (16 males, 17 prepubertal and 19 post-pubertal; mean ± SD age 11.4 ± 3.9 years) were included. A higher BMI was observed in adolescents (p-value: 0.018). The BIA revealed a significant increase in total body water (TBW) and muscle mass (MM) in P subjects either compliant (p-value: 0.001) or non-compliant with the diet (p-value: 0.001). MM content correlated with increased Phe intake (r = 0.63; p < 0.001). In the subgroup of five patients taking L-AAs and glycomacropeptides (GMPs), BCAA values tended to be lower than those taking only L-AA mixtures, with a significant trend for valine. Maintenance of body composition parameters within the normal range—for both fat and muscle mass—and levels of BCAAs can be helpful in reducing the risk of becoming overweight in adulthood. Further studies are needed to confirm these findings

    Mapping the Wolf-Hirschhorn Syndrome Phenotype Outside the Currently Accepted WHS Critical Region and Defining a New Critical Region, WHSCR-2

    Get PDF
    In an attempt to define the distinctive Wolf-Hirschhorn syndrome (WHS) phenotype, and to map its specific clinical manifestations, a total of eight patients carrying a 4p16.3 microdeletion were analyzed for their clinical phenotype and their respective genotypes. The extent of each individual deletion was established by fluorescence in situ hybridization, with a cosmid contig spanning the genomic region from MSX1 (distal half of 4p16.1) to the subtelomeric locus D4S3359. The deletions were 1.9–3.5 Mb, and all were terminal. All the patients presented with a mild phenotype, in which major malformations were usually absent. It is worth noting that head circumference was normal for height in two patients (those with the smallest deletions [1.9 and 2.2 Mb]). The currently accepted WHS critical region (WHSCR) was fully preserved in the patient with the 1.9-Mb deletion, in spite of a typical WHS phenotype. The deletion in this patient spanned the chromosome region from D4S3327 (190 b4 cosmid clone included) to the telomere. From a clinical point of view, the distinctive WHS phenotype is defined by the presence of typical facial appearance, mental retardation, growth delay, congenital hypotonia, and seizures. These signs represent the minimal diagnostic criteria for WHS. This basic phenotype maps distal to the currently accepted WHSCR. Here, we propose a new critical region for WHS, and we refer to this region as “WHSCR-2.” It falls within a 300–600-kb interval in 4p16.3, between the loci D4S3327 and D4S98-D4S168. Among the candidate genes already described for WHS, LETM1 (leucine zipper/EF-hand-containing transmembrane) is likely to be pathogenetically involved in seizures. On the basis of genotype-phenotype correlation analysis, dividing the WHS phenotype into two distinct clinical entities, a “classical” and a “mild” form, is recommended for the purpose of proper genetic counseling

    Early-Onset Diabetes in an Infant with a Novel Frameshift Mutation in LRBA

    No full text
    We describe early-onset diabetes in a 6-month-old patient carrying an LRBA gene mutation. Mutations in this gene cause primary immunodeficiency with autoimmune disorders in infancy. At admission, he was in diabetic ketoacidosis, and treatment with fluid infusion rehydration and then i.v. insulin was required. He was discharged with a hybrid closed-loop system for insulin infusion and prevention of hypoglycemia (Minimed Medtronic 670G). He underwent a next-generation sequencing analysis for monogenic diabetes genes, which showed that he was compound heterozygous for two mutations in the LRBA gene. In the following months, he developed arthritis of hands and feet, chronic diarrhea, and growth failure. He underwent bone marrow transplantation with remission of diarrhea and arthritis, but not of diabetes and growth failure. The blood glucose control has always been at target (last HbA1c 6%) without any severe hypoglycemia. LRBA gene mutations are a very rare cause of autoimmune diabetes. This report describes the clinical course in a very young patient. The hybrid closed-loop system was safe and efficient in the management of blood glucose. This report describes the clinical course of diabetes in a patient with a novel LRBA gene mutation

    Novel approach to idursulfase and laronidase desensitization in type 2 and type 1 S mucopolysaccharidosis (MPS)

    No full text
    Background: Idursulfase and laronidase are drugs used to treat Hunter syndrome (mucopolysaccharidosis type 2) and Scheie syndrome (mucopolysaccharidosis type 1 S), respectively. These are rare lysosomal storage disorders, leading to accumulation of glycosaminoglycans within lysosomes. Failure of early recognition of the disease and/or delay in starting the appropriate treatment result in severe clinical impairment and death. For almost 20 years, enzyme replacement therapy with recombinant proteins has represented the first line therapeutic option. However, administration of idursulfase and laronidase is associated with infusion-related hypersensitivity reactions, in approx. 20% of patients. In these patients, rapid desensitization by intravenous administration protocols has been used in order to avoid treatment discontinuation. This approach proved effective and safe. However, long-term tolerance could not be achieved. Thus, we decided to combine rapid desensitization with allergen immunotherapy-like desensitization. Results: Two patients with Hunter syndrome and one patient with Scheie syndrome developed severe allergy to idursulfase and laronidase, respectively, preventing them from continuing the otherwise indispensable therapy. In all three patients, the possible IgE-mediated nature of the reactions suffered was suggested by positive skin tests with the two enzymes, respectively. By devising 12-step, 3-dilution rapid desensitization protocols, we resumed the enzyme replacement therapy. However, the prolonged time required for administration (a not negligible pitfall, since therapy should be given weekly for life) and the persistent occurrence of reactions (mild but still requiring anti-allergic medication at full dosage) led us to combine rapid desensitization with a compact 11-step, 24-day allergen immunotherapy-like desensitization protocol. Thus, idursulfase and laronidase were injected subcutaneously, with a 500-fold increase from step 1 to step 11 for idursulfase and a 222-fold increase for laronidase. This strategy led to restoration of long-term tolerance, allowing weekly intravenous therapy administration under standard conditions, according to the manufacturer instructions, in the absence of side effects and with only precautionary low-dose premedication. Conclusion: Rapid desensitization is a suitable and safe option in the case of idursulfase and laronidase allergy. Combination with subcutaneous allergen immunotherapy-like desensitization afforded restoration of enzyme replacement therapy given by the normal administration schedule, by inducing sustained tolerance
    corecore