7,517 research outputs found

    Context dependent revocation in delegated XACML

    Get PDF
    The XACML standard defines an XML based language for defining access control policies and a related processing model. Recent work aims to add delegation to XACML in order to express the right to administrate XACML policies within XACML itself. The delegation profile draft explains how to validate the right to issue a policy, but there are no provisions for removing a policy. This paper proposes a revocation model for delegated XACML. A novel feature of this model is that whether a revocation is valid or not, depends not only on who issued the revocation, but also on the context in which an attempt to use the revoked policy is done

    Magnetic non-contact friction from domain wall dynamics actuated by oscillatory mechanical motion

    Get PDF
    Magnetic friction is a form of non-contact friction arising from the dissipation of energy in a magnet due to spin reorientation in a magnetic field. In this paper we study magnetic friction in the context of micromagnetics, using our recent implementation of smooth spring-driven motion [Phys. Rev. E. 97, 053301 (2018)] to simulate ring-down measurements in two setups where domain wall dynamics is induced by mechanical motion. These include a single thin film with a domain wall in an external field and a setup mimicking a magnetic cantilever tip and substrate, in which the two magnets interact through dipolar interactions. We investigate how various micromagnetic parameters influence the domain wall dynamics actuated by the oscillatory spring-driven mechanical motion and the resulting damping coefficient. Our simulations show that the magnitude of magnetic friction can be comparable to other forms of non-contact friction. For oscillation frequencies lower than those inducing excitations of the internal structure of the domain walls, the damping coefficient is found to be independent of frequency. Hence, our results obtained in the frequency range from 8 to 112 MHz are expected to be relevant also for typical experimental setups operating in the 100 kHz range.Comment: 19 pages, 8 figure

    Estimation of AR and ARMA models by stochastic complexity

    Full text link
    In this paper the stochastic complexity criterion is applied to estimation of the order in AR and ARMA models. The power of the criterion for short strings is illustrated by simulations. It requires an integral of the square root of Fisher information, which is done by Monte Carlo technique. The stochastic complexity, which is the negative logarithm of the Normalized Maximum Likelihood universal density function, is given. Also, exact asymptotic formulas for the Fisher information matrix are derived.Comment: Published at http://dx.doi.org/10.1214/074921706000000941 in the IMS Lecture Notes Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Determining Principal Component Cardinality through the Principle of Minimum Description Length

    Full text link
    PCA (Principal Component Analysis) and its variants areubiquitous techniques for matrix dimension reduction and reduced-dimensionlatent-factor extraction. One significant challenge in using PCA, is thechoice of the number of principal components. The information-theoreticMDL (Minimum Description Length) principle gives objective compression-based criteria for model selection, but it is difficult to analytically applyits modern definition - NML (Normalized Maximum Likelihood) - to theproblem of PCA. This work shows a general reduction of NML prob-lems to lower-dimension problems. Applying this reduction, it boundsthe NML of PCA, by terms of the NML of linear regression, which areknown.Comment: LOD 201

    MDL Denoising Revisited

    Full text link
    We refine and extend an earlier MDL denoising criterion for wavelet-based denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and non-informative wavelet coefficients, respectively. This suggests two refinements, adding a code-length for the model index, and extending the model in order to account for subband-dependent coefficient distributions. A third refinement is derivation of soft thresholding inspired by predictive universal coding with weighted mixtures. We propose a practical method incorporating all three refinements, which is shown to achieve good performance and robustness in denoising both artificial and natural signals.Comment: Submitted to IEEE Transactions on Information Theory, June 200

    The Minimum Description Length Principle and Model Selection in Spectropolarimetry

    Get PDF
    It is shown that the two-part Minimum Description Length Principle can be used to discriminate among different models that can explain a given observed dataset. The description length is chosen to be the sum of the lengths of the message needed to encode the model plus the message needed to encode the data when the model is applied to the dataset. It is verified that the proposed principle can efficiently distinguish the model that correctly fits the observations while avoiding over-fitting. The capabilities of this criterion are shown in two simple problems for the analysis of observed spectropolarimetric signals. The first is the de-noising of observations with the aid of the PCA technique. The second is the selection of the optimal number of parameters in LTE inversions. We propose this criterion as a quantitative approach for distinguising the most plausible model among a set of proposed models. This quantity is very easy to implement as an additional output on the existing inversion codes.Comment: Accepted for publication in the Astrophysical Journa

    Complexity Through Nonextensivity

    Full text link
    The problem of defining and studying complexity of a time series has interested people for years. In the context of dynamical systems, Grassberger has suggested that a slow approach of the entropy to its extensive asymptotic limit is a sign of complexity. We investigate this idea further by information theoretic and statistical mechanics techniques and show that these arguments can be made precise, and that they generalize many previous approaches to complexity, in particular unifying ideas from the physics literature with ideas from learning and coding theory; there are even connections of this statistical approach to algorithmic or Kolmogorov complexity. Moreover, a set of simple axioms similar to those used by Shannon in his development of information theory allows us to prove that the divergent part of the subextensive component of the entropy is a unique complexity measure. We classify time series by their complexities and demonstrate that beyond the `logarithmic' complexity classes widely anticipated in the literature there are qualitatively more complex, `power--law' classes which deserve more attention.Comment: summarizes and extends physics/000707

    Statistical inference optimized with respect to the observed sample for single or multiple comparisons

    Full text link
    The normalized maximum likelihood (NML) is a recent penalized likelihood that has properties that justify defining the amount of discrimination information (DI) in the data supporting an alternative hypothesis over a null hypothesis as the logarithm of an NML ratio, namely, the alternative hypothesis NML divided by the null hypothesis NML. The resulting DI, like the Bayes factor but unlike the p-value, measures the strength of evidence for an alternative hypothesis over a null hypothesis such that the probability of misleading evidence vanishes asymptotically under weak regularity conditions and such that evidence can support a simple null hypothesis. Unlike the Bayes factor, the DI does not require a prior distribution and is minimax optimal in a sense that does not involve averaging over outcomes that did not occur. Replacing a (possibly pseudo-) likelihood function with its weighted counterpart extends the scope of the DI to models for which the unweighted NML is undefined. The likelihood weights leverage side information, either in data associated with comparisons other than the comparison at hand or in the parameter value of a simple null hypothesis. Two case studies, one involving multiple populations and the other involving multiple biological features, indicate that the DI is robust to the type of side information used when that information is assigned the weight of a single observation. Such robustness suggests that very little adjustment for multiple comparisons is warranted if the sample size is at least moderate.Comment: Typo in equation (7) of v2 corrected in equation (6) of v3; clarity improve
    • 

    corecore