
Context Dependent Revocation in Delegated XACML

Erik Rissanen1, Ludwig Seitz2

1 Axiomatics AB
Electrum 223, 164 40 Kista, Sweden

erik@axiomatics.com

2 Swedish Institute of Computer Science, SICS AB
Box 1263, Kista 16429, Sweden

ludwig@sics.se
June 2008

SICS Technical Report T2008:10
ISSN 1100-3154

Abstract

The XACML standard defines an XML based language for defining ac-
cess control policies and a related processing model. Recent work aims
to add delegation to XACML in order to express the right to administrate
XACML policies within XACML itself. The delegation profile draft ex-
plains how to validate the right to issue a policy, but there are no provisions
for removing a policy. This paper proposes a revocation model for delegated
XACML. A novel feature of this model is that whether a revocation is valid
or not, depends not only on who issued the revocation, but also on the context
in which an attempt to use the revoked policy is done.

Keywords: XACML, Access Control, Revocation

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION 1

1 Introduction

XACML [10], eXtensible Access Control Markup Language, is an XML based
standard language for defining access control policies. Recently the XACML tech-
nical committee has been working on adding delegation to XACML in order to ex-
press the right to administrate XACML policies within XACML itself. The work is
at the time of writing still in progress, but there is a fairly developed draft available,
[7]. The delegation profile draft explains how to validate the right to issue apolicy,
but there is no support to validate the right to remove, or revoke, a policy.This
paper proposes a revocation model for delegated XACML.

The properties of delegated XACML lead to a model in which the validity of a
revocation depends, not only on who issued the revocation, but also onthe context
in which the policy that was revoked is used. For instance, a single policy issued
by a single issuer could grant the right to use both a printer and a web page. This
single policy could in delegated XACML be supported by two different authorities:
a different authority for the printer than for the web page. In case a printer authority
revokes the joint policy, then revocation would have effect only when thepolicy is
used to access the printer, not when it is used to access the web page.

2 Introduction to XACML

Due to space constraints we can only give a brief overview of XACML here. The
XACML committee website [10] contains a good introduction to the basic prin-
ciples of XACML [9], the specification of the XACML language and processing
model [6] and a draft for the upcoming delegation model [7].

XACML is based on attributes of subjects, resources, actions and the environ-
ment, which are used to describe an accessrequest. The box labelled “Request 1”
in figure 1 is an illustration of a request. In this case the request asks “Is the access
allowed where the subject is Bob and the resource is Printer 14?”.

Additional attributes to those in the request can be provided by external sources.
The complete set of attributes used in the processing of a request is knownas the
request context. There is a table of such additional attributes in figure 1.

Note that in this paper we do not consider the source of attributes or how at-
tributes are administered. We simply assume that the attributes are available and
are trusted.Policies can then be used to express rights in terms of the attributes.

XACML policies are functional expressions that pull their input from the re-
quest context. When a request context is evaluated against a set of policies, a
response is calculated as specified by the semantics of the policy format andthe
processing model. The response can either bePermit, Deny, NotApplicable or In-
determinate.

3 REVOCATION 2

2.1 Delegation

The right to issue policies is sometimes called delegation. The word delegation has
various meanings in the access control literature. For our purposes it denotes the
act of creating rights.

Delegated XACML differentiates between trusted policies and policies with
untrusted issuers. The trusted policies need no special validation and form the
roots of trust (analogous to the self signed certificates of root CAs in PKI). The
policies with untrusted issuers have to be validated against the trusted policies.
The validation process is calledreduction and is performed when an access request
is evaluated.

Reduction is performed by means of a search in a directed graph. The nodes of
the graph are the policies in the policy set where reduction is performed. The edges
of the graph represent that one policy is authorised by another and arecalculated
with administrative requests which contain the attributes of the issuers of policies.
The issuer attributes are contained in a category calledDelegate. Figure 2 shows an
example of an administrative request. The meaning of the administrative request is
“May John issue a policy which grants Bob access to Printer14?” Such a request
can establish an edge between a policy issued by John, and a policy which grants
the authority. Policies 1 to 4 in figure 1 are examples of suchadministrative policies
which grant the right to issue other policies.

Delegated XACML introduces an issue concerning the timing of attributes.
When the right to issue a policy is validated, the attributes of the issuer are com-
pared against conditions in the administrative policies. Some attributes may change
over time, so the question is for which point in time the attributes of an issuer
should be resolved. The XACML delegation draft mentions two possibilities: use
the attributes of issuers as they are at the time of the access request or as they were
at the time the policy being reduced was issued.

In this paper the second option is used since in this case a policy remains valid
when an administrator leaves and loses his administrator attributes, which we find
desirable.

An example of a reduction graph, can be seen in figure 1.

3 Revocation

The XACML administrative policy draft [7] does not in any way address the issue
of how policies can be revoked.

Please note that we do not address distribution of revocations in this paper. For
the sake of this paper, we assume that the revocations have been distributed and are
available. Our work is then about who may revoke which policy, which becomes
more complex in the case of delegated XACML, than for instance in the case of
Public Key Infrastructure, PKI.

We define a revocation as a statement made by an issuer which contains:

3 REVOCATION 3

1. An identifying attribute of the issuer.

2. The identifier of the policy which is being revoked.

The semantics of the revocation is that the issuer asserts that the revoked policy
must not be in effect. Our goal here is to define the authority of a given issuer of a
revocation with respect to a given revoked policy.

We base our revocation model on a use case where there is an administrator
group in an organisation. The tasks of the administrators include providing access
control policies for resources. The administrator group is expressed as an attribute.
The same group should also be able to remove the policies they can create.

Using the delegation model we can allow a some group to issue policies within
specified constraints. For instance, policy 1 in figures 1 and 4 implies that everyone
in the PrinterAdmins group has the right to issue policies about the resources in
the group Printers, since policy 1 will support policies which match requestson
those resources.

For our revocation model we have the following requirements based on ouruse
case:

1. A current administrator can revoke policies which he could issue himself,
regardless of whether it was himself who issued the policy.

2. A former administrator cannot revoke a policy, even if it was he himself who
issued it.

3. (Optionally) a current administrator should also be able to revoke policies
that are indirectly supported by policies he could issue.

Note that the simple and common revocation model where the issuer of a policy
(or a certificate) may revoke it, is not appropriate for these requirements.

Also note that we do not want to let the issuer of the policy to decide who has
authority to revoke. For instance, embedding an URL of a revocation list in the
policy is not acceptable (see for instance section 4.2.1.14 in [5]), since that would
leave revocation in the control of the issuer.

As we will show, the third requirement makes the reduction process NP-complete,
so this requirement would likely be sacrificed in an implementation. In the interest
of research, we keep it in this paper and the examples shown.

3.1 Model description

We now present our revocation model. The model consists of a modification to
the processing of delegation in XACML. Initially, the reduction graph is formed
as specified in the XACML administrative policy draft [7]. However, the search of
the graph is modified by our revocation model.

3 REVOCATION 4

Consider the search process, during which we are about to explore anedge
from policyPa to policyPb. (For simplicity, we ignore the different types of edges
present in the full reduction model.)

Let PathPa
denote the reduction path that was used to reachPa. To form the

edge fromPa to Pb, an administrative request,AReq, was used.

1. For each revocationRj of a policy on the reduction path path includingPa,
PathPa

∪ {Pa}, generate aRevocation Authorisation Request, RARj . The
revocation authorisation requests are used to validate the authority of the
revocations. A RAR has the same form as an XACML administrative request
and its content is based onAReq.

2. RARj is generated from the edge generating requestAReq by replacing the
Delegate category ofAReq with the issuer of the revocationRj .

3. Evaluate eachRARj against the policyPb.

4. If any RARj evaluates to Permit, then the search does not make the jump
from policyPa to policyPb.

Informally, we stop the graph search if we find an administrative policy which
supports a revocation of a policy on the current reduction path during thesearch,
since the revocation breaks the path. Note that we stop the search beforewe reach
a trusted policy. This means that the administrative policyPb that authorises the
revocationRj might be unauthorised. However, this is not an issue since the end
result is the same regardless the policyPb is authorised or not: in either casePa is
not authorised throughPb. There are two possibilities.

If Pb is not authorised, we would not be able to reduce to the trusted issuer
throughPb, meaningPa would not be authorised throughPb even though the revo-
cationRj would be unauthorised.

If the policyPb is authorised, then the revocationRj is also authorised andPa

is not authorised throughPb because of the revocation on the path.

3.2 Example

Figure 1 shows an example.
Consider when policy 5 is reduced by means of a search of the reduction graph,

and we have reached policy 3, and are about to jump the edge to policy 1. The
reduction path consists of policy 5. The edge between policy 3 and policy 1,was
generated by an administrative request,AReq. In this caseAReq was the one
shown in Figure 2. (In terms of the model description above, we havePa = Policy
3 andPb = Policy 1.)

1. In the example revocation 1 is a revocation on policy 5, which is on the
reduction path. We need to test whether this revocation is valid. We do so by
generating the Revocation Authorisation Request,RAR.

3 REVOCATION 5

Policy 1
PolicyIssuer: trusted
Subject: user_group: Employees
Resource: resource_group: Printers
Delegate: user_group: Printer_Admins

Policy 2
PolicyIssuer: trusted
Subject: user_group: Employees
Resource: resource_group: Internal_Web
Delegate: user_group: Web_Admins

Policy 3
PolicyIssuer: subject−id: John
Subject: user_group: Eng_Department
Resource: resource_group: Printers
Delegate: user_group: EngDep_Admins

Policy 4
PolicyIssuer: subject−id: Alice
Subject: user_group: Eng_Department
Resource: resource_group: Internal_Web
Delegate: user_group: EngDep_Admins

Policy 5
PolicyIssuer: subject−id: Eve
Subject: user_group: Eng_Department
Resource: resource_group: Eng_Resources

Revocation 1
Issuer: subject−id: Carol
Revokes Policy 5

Dynamic Attributes

Holder Attribute id Attribute value
John user_group Printer_Admins
Carol user_group Printer_Admins
Alice user_group Web_Admins
Eve user_group EngDep_Admins
Printer14 resource_group Printers
Printer14 resource_group Eng_Resources
http://../p15.html resource_group Internal_Web
http://../p15.html resource_group Eng_Resources
Bob user_group Eng_Department
Bob user_group Employees

Request 1
Subject: subject−id: Bob
Resource: resource−id: Printer14

Figure 1: Dependencies between policies and the revocation. Policy 5 combines re-
sources from different authorities so its revocation status depends on who revoked
it. Revocation 1 is issued by a printer administrator, so when the access request is
about access to a printer, revocation 1 gets support from the same path as the access
request, invalidating the path to the trusted policy. The request is not permitted.

2. TheRAR is generated from the administrative requestAReq and the revo-
cation by replacing the Delegate ofAReq with the issuer of the revocation.
In this case the result is theRAR shown in Figure 3.

3. We evaluate theRAR against policy 1. In this case, since Carol is a member
of the PrinterAdmins group, theRAR will evaluate to Permit.

4. Since theRAR evaluates to Permit with policy 1, the search is stopped here
and we do not follow the edge from policy 3 to policy 1.

5. In this case there is no other path to backtrack to, so policy 5 will not be
authorised.

3 REVOCATION 6

<Request>
<Attributes Category="&Delegate;">
<Attribute AttributeId="&subject-id;">

<AttributeValue DataType="&string;">John</AttributeValue>
</Attribute>

</Attributes>
<Attributes Category="&Subject;">
<Attribute AttributeId="&subject-id;">

<AttributeValue DataType="&string;">Bob</AttributeValue>
</Attribute>

</Attributes>
<Attributes Category="&Resource;">
<Attribute AttributeId="&resource-id;">

<AttributeValue DataType="&string;">Printer14</AttributeValue>
</Attribute>

</Attributes>
</Request>

Figure 2: The administrative request which is used to reduce policy 3.

In delegated XACML it is possible that a delegated policy receives support
from different policies depending on the access situation. This reflects that re-
sources with different authorities have been composed into a single policy.This
possibility is handled by our revocation model.

For instance, if we instead have the request in figure 4, the revocation will
not have any effect. First, policy 5 will match Request 2 since the web pageis
in the EngDepresources group. For this request the resource does not match the
conditions in policies 1 and 3, so the search does not reach them. Instead policy 4
will support policy 5 and policy 2 will in turn support policy 4. Revocation 1 has
no effect on this path since it is not supported by either policy 4 or by policy2.

This is as desired since Carol, being a printer administrator should not haveany
authority over web pages. With this revocation model, a policy which combines
resources from different authorities may be either revoked or not revoked depend-
ing on which authority revoked the policy and which resource the access request
concerns. If a printer administrator revoked the policy, it is revoked in thecontext
of an access request to a printer, but not in the context of a web page.

3.3 Computational complexity

If indirect revocation, that is revocation along the full reduction path is allowed, the
revocation model makes the reduction search of XACML delegation NP-complete.

If indirect revocation is not allowed, it is not necessary to search the full re-
duction path for revoked policies, so the graph search is no longer path dependent
and the search is not NP-complete and the complexity of the XACML delegation
model is not affected.

Here we present an informal sketch of a proof showing that indirect revocation

3 REVOCATION 7

<Request>
<Attributes Category="&Delegate;">
<Attribute AttributeId="&subject-id;">

<AttributeValue DataType="&string;">Carol</AttributeValue>
</Attribute>

</Attributes>
<Attributes Category="&Subject;">
<Attribute AttributeId="&subject-id;">

<AttributeValue DataType="&string;">Bob</AttributeValue>
</Attribute>

</Attributes>
<Attributes Category="&Resource;">
<Attribute AttributeId="&resource-id;">

<AttributeValue DataType="&string;">Printer14</AttributeValue>
</Attribute>

</Attributes>
</Request>

Figure 3: The revocation authorisation request which is used to check theauthority
of Carol to revoke policy 5 when policy 3 is being reduced.

makes the reduction search NP-complete. We reduce to 3-SAT, which is known to
be NP-complete.

Consider the following instance of 3-SAT:

(x1,1 OR x1,2 OR x1,3) AND

(x2,1 OR x2,2 OR x2,3) AND

. . .

(xN,1 OR xN,2 OR xN,3)

where eachx is a variable or a negation of a variable.
Based on this 3-SAT instance we can generate an XACML policy set, which

together with indirect revocations will solve the 3-SAT instance.
We create a policy set which contains the following policies:

• For x1,1, x1,2 andx1,3, we create policiesP1,1, P1,2 andP1,3. The policies
have unique issuersI1,1, I1,2 andI1,3. These policies are access policies for
a dummy resource calledResource.

• For the remainingx, we create policies which allow delegation to the issuers
of the policies corresponding to the preceding disjunction in the 3-SAT in-
stance. That is, policiesxk,1, xk,2 andxk,3 have issuersIk,1, Ik,2 andIk,3.
Each of these policies allow a disjunction of three delegatesIk−1,1, Ik−1,2 or
Ik−1,3. Again, the resource allowed by the policies is the dummy resource.

• There is one root policy which allows a disjunction of the three delegates
IN,1, IN,2 or IN,3 (and the dummy resource).

3 REVOCATION 8

Dynamic Attributes

Holder Attribute id Attribute value
John user_group Printer_Admins
Carol user_group Printer_Admins
Alice user_group Web_Admins
Eve user_group EngDep_Admins
Printer14 resource_group Printers
Printer14 resource_group Eng_Resources
http://../p15.html resource_group Internal_Web
http://../p15.html resource_group Eng_Resources
Bob user_group Eng_Department
Bob user_group Employees

Policy 1
PolicyIssuer: trusted
Subject: user_group: Employees
Resource: resource_group: Printers
Delegate: user_group: Printer_Admins

Policy 3
PolicyIssuer: subject−id: John
Subject: user_group: Eng_Department
Resource: resource_group: Printers
Delegate: user_group: EngDep_Admins

Policy 2
PolicyIssuer: trusted
Subject: user_group: Employees
Resource: resource_group: Internal_Web
Delegate: user_group: Web_Admins

Policy 4
PolicyIssuer: subject−id: Alice
Subject: user_group: Eng_Department
Resource: resource_group: Internal_Web
Delegate: user_group: EngDep_Admins

Revocation 1
Issuer: subject−id: Carol
Revokes Policy 5 Policy 5

PolicyIssuer: subject−id: Eve
Subject: user_group: Eng_Department
Resource: resource_group: Eng_Resources

Request 2
Subject: subject−id: Bob
Resource: resource−id: http://.../p15.html

Figure 4: Dependencies between policies and the revocation. Revocation1 is is-
sued by a printer administrator, so when the access request is for a web page, the
revocation does not get any support from the path that supports the access request.
The revocation has no effect in the context of this access request andthe access is
permitted.

See figure 5 for an illustration of the resulting reduction graph.
In addition to the policies, we create revocations. For each pair(xi,j , xk,l),

where i < k and xi,j and xk,l cannot be satisfied simultaneously, we create a
revocation for policyPi,j issued by issuerIk,l.

When we evaluate an access request to the dummy resource in this policy set,
the 3-SAT instance is satisfiable iff we can find a reduction path to the trusted root
policy.

First, assume that the 3-SAT instance is satisfiable. In this case we can select
a path corresponding to the variable assignment which satisfies the 3-SAT.This
path will not contain any revocations since we create revocations only if there is a

3 REVOCATION 9

Figure 5: The reduction graph in the policy set used to solve the 3-SAT instance.
The structure corresponds to the clauses in the 3-SAT instance. The interpretation
is such that if we find a reduction path to the trusted root policy, we have satisfied
the 3-SAT in the way we selected the policies on the reduction path. Revocations
(not shown) are used to block paths which correspond to conflicts in the 3-SAT
assignment.

conflict in the variable assignments.
Second, assume that there is a valid, non-revoked reduction path in the policy

set. In this case we can satisfy the 3-SAT by setting the correspondingx to true.
There cannot be any conflict in the assignment since we assumed that there was no
revocation on the path.

It is easily seen that the time needed to construct the policy set and the revoca-
tions is polynomial, so indirect revocation reduces to 3-SAT and is NP-complete.

3 REVOCATION 10

3.4 Properties of the model and related work

Informally, in our model someone with the authority to support a policy, either
directly or indirectly, can also revoke it. The motivation for choosing this model
is that in many cases it is natural for the right to issue and revoke to go together.
Also, being able to indirectly support a policy implies authority over the policy,
so it is not far fetched to allow for revocation of indirectly supported policies. An
alternative would be to only allow to revoke policies which are directly supported,
which has the benefit that such a model is not NP-complete. Note however,that
since our revocations cascade, revoking a directly supported policy also invalidates
indirectly supported policies.

Hagstr̈om et.al. [4] classify revocation schemes based on three characteristics:
resilience, propagation anddominance.

Resilience refers to whether a permission stays revoked if it would be reissued.
In other words, resilience differentiates between negative permissions which over-
ride a positive permission and removal of a permission. In our model revocations
are not resilient since they refer to specific instances of policies.

Propagation refers to whether revocation of a permission which has been used
for delegation will cause a cascading removal of dependent permissions. Our
model is cascading since a revocation blocks the reduction process, thusinvali-
dating everything that was supported by the revoked policy. Other models allow
for both cascading and noncascading revocation, such as those explored database
research [2] and in RBAC [8]. Note that the effect of noncascading revocation can
be achieved in our model by not revoking a policy, but instead revoking an attribute.

Finally, dominance refers to what happens to a permission if it is revoked but
the permission is also granted by other grantors. The revocation is said to bedomi-
nating, or strong, if the permission goes away despite this other support. Otherwise
it is known as weak. Note that Hagström et.al. only consider the cases where the
other grant is not independent of the one being revoked, that is there isa common
supporting permission for both grants. Our model is weak since if there aretwo
policies granting the same permission, a revocation will affect only either instance,
leaving the other.

E. Barka and R. Sandhu [1] introduce another characteristics which they call
grant-dependency. In what they call agrant-independent delegation, any member
of the delegator role can revoke the membership of a delegatee. If one generalises
this to an attribute based approach such as used in XACML, this corresponds to our
you can revoke what you could grant approach. Our model isgrant-independent
since not only the original issuer can revoke a policy.

Sadighi et.al. [3] present a feature rich revocation model for their Privilege
Calculus delegation model, which is somewhat similar to the XACML delegation
model. In contrast to the XACML delegation model, the privilege calculus takes
time into account in administrative actions, which permits both cascading and non-
cascading revocations by setting different timestamps for when a revocation should
take effect.

4 FUTURE WORK 11

The central novel feature of our model, which is not captured by any ofthe
characteristics described above, is that the effect of a revocation depends on which
access request is being processed. We call this characteristicscontext dependency.
A revocation which is context independent will have the same effect on a permis-
sion regardless for what the permission is used. We are not aware of any other
access control model which has context dependent revocation.

4 Future work

One issue with our model is that a revocation does not remove a policy, rather a
revocation means more information to be considered during access request pro-
cessing. This leads to two concerns.

Firstly, there is the concern that the database with access control information
grows over time. However, in a setting with digital signatures policies would likely
expire regardless the revocation model, but the issue warrants further research.

The second concern is that context dependent revocation could be hard for
human administrators to comprehend. We plan to explore this issue in the context
of our ongoing research on support tools for policy administration.

References

[1] BARKA , E., AND SANDHU , R. Framework for Role-Based Delegation Mod-
els. InProceedings of the 16th Annual Computer Security Applications Con-
ference (New Orleans, Louisiana, USA, December 2000).

[2] BERTINO, E., SAMARATI , P., AND JAJODIA, S. An Extended Authoriza-
tion Model for Relational Databases.Transactions on Knowledge and Data
Engineering 9, 1 (1997), 1–17.

[3] FIROZABADI , B. S.,AND SERGOT, M. Revocation Schemes for Delegated
Authorities. InProceedings of the Third International Workshop on Policies
for Distributed Systems and Networks (June 2002).

[4] HAGSTRÖM, Å., JAJODIA, S., PARISI-PRESICCE, F., AND WIJESEKERA,
D. Revocations - a Classification. InProceedings of the 14th IEEE Workshop
on Computer Security Foundations (Cape Breton, Nova Scotia, Canada, June
2001).

[5] HOUSLEY, R., POLK , W., FORD, W., AND SOLO, D. Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
Request For Comments (RFC) 3280, Internet Engineering Task Force (IETF),
April 2002.
http://www.ietf.org/rfc/rfc3280.txt.

REFERENCES 12

[6] M OSES, T. eXtensible Access Control Markup Language (XACML)
Version 2.0. Standard, Organization for the Advancement of Struc-
tured Information Standards (OASIS), February 2005. http://docs.oasis-
open.org/xacml/2.0/accesscontrol-xacml-2.0-core-spec-os.pdf.

[7] RISSANEN, E., LOCKHART, H., AND MOSES, T. XACML v3.0 ad-
ministrative policy. Standard, Organization for the Advancement of
Structured Information Standards (OASIS), May 2007. http://www.oasis-
open.org/committees/download.php/23951/xacml-3.0-admininstration-v1-
wd-17.zip.

[8] SANDHU , R., BHAMIDIPATI , V., AND MUNAWER, Q. The ARBAC97
Model for Role-Based Administration of Roles.Transactions on Informa-
tion and System Security (TISSEC) 2, 1 (1999), 105–135.

[9] XACML, 2003. http://www.oasis-open.org/committees/download.php
/2713/Brief Introductionto XACML.html.

[10] XACML, 2004. http://www.oasis-open.org/committees/xacml.

