312 research outputs found

    Spherical-box approach for resonances in presence of Coulomb interaction

    Full text link
    The spherical-box approach is extended to calculate the resonance parameters and the real part of the wave function for single particle resonances in a potential containing the long-range Coulomb interaction. A model potential is taken to demonstrate the ability and accuracy of this approach. The calculated resonance parameters are compared with available results from other methods. It is shown that in the presence of the Coulomb interaction, the spherical-box approach works well for not so broad resonances. In particular, for very narrow resonances, the present method gives resonance parameters in a very high precision.Comment: 10 pages, 5 EPS figures; to be published in J. Phys.

    From spin liquid to magnetic ordering in the anisotropic kagome Y-Kapellasite Y3Cu9(OH)19Cl8: a single crystal study

    Full text link
    Y3Cu9(OH)19Cl8 realizes an original anisotropic kagome model hosting a rich magnetic phase diagram [M. Hering et al, npj Computational Materials 8, 1 (2022)]. We present an improved synthesis of large phase-pure single crystals via an external gradient method. These crystals were investigated in details by susceptibility, specific heat, thermal expansion, neutron scattering and local muSR and NMR techniques. At variance with polycristalline samples, the study of single crystals gives evidence for subtle structural instabilities at 33K and 13K which preserve the global symmetry of the system and thus the magnetic model. At 2.1K the compound shows a magnetic transition to a coplanar (1/3,1/3) long range order as predicted theoretically. However our analysis of the spin wave excitations yields magnetic interactions which locate the compound closer to the phase boundary to a classical jammed spin liquid phase. Enhanced quantum fluctuations at this boundary may be responsible for the strongly reduced ordered moment of the Cu2+, estimated to be 0.075muB from muSR

    The dynamical Green's function and an exact optical potential for electron-molecule scattering including nuclear dynamics

    Get PDF
    We derive a rigorous optical potential for electron-molecule scattering including the effects of nuclear dynamics by extending the common many-body Green's function approach to optical potentials beyond the fixed-nuclei limit for molecular targets. Our formalism treats the projectile electron and the nuclear motion of the target molecule on the same footing whereby the dynamical optical potential rigorously accounts for the complex many-body nature of the scattering target. One central result of the present work is that the common fixed-nuclei optical potential is a valid adiabatic approximation to the dynamical optical potential even when projectile and nuclear motion are (nonadiabatically) coupled as long as the scattering energy is well below the electronic excitation thresholds of the target. For extremely low projectile velocities, however, when the cross sections are most sensitive to the scattering potential, we expect the influences of the nuclear dynamics on the optical potential to become relevant. For these cases, a systematic way to improve the adiabatic approximation to the dynamical optical potential is presented that yields non-local operators with respect to the nuclear coordinates.Comment: 22 pages, no figures, accepted for publ., Phys. Rev.

    Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2] cycloadditions

    Get PDF
    The vast potential of organic materials for electronic, optoelectronic and spintronic devices entails substantial interest in the fabrication of π-conjugated systems with tailored functionality directly at insulating interfaces. On-surface fabrication of such materials on non-metal surfaces remains to be demonstrated with high yield and selectivity. Here we present the synthesis of polyaromatic chains on metallic substrates, insulating layers, and in the solid state. Scanning probe microscopy shows the formation of azaullazine repeating units on Au(111), Ag(111), and h-BN/Cu(111), stemming from intermolecular homo-coupling via cycloaddition reactions of CN-substituted polycyclic aromatic azomethine ylide (PAMY) intermediates followed by subsequent dehydrogenation. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry demonstrates that the reaction also takes place in the solid state in the absence of any catalyst. Such intermolecular cycloaddition reactions are promising methods for direct synthesis of regioregular polyaromatic polymers on arbitrary insulating surfaces.This work was financially supported by the European Research Council Consolidator Grant NanoSurfs (no. 615233), the Advanced Grant (no. 694097), the Horizon 2020 research and innovation program 2D ink (no. 664878) and the National Science Foundation of China (no. 11974403 and Sino-German Project no. 51761135130). W.A. acknowledges funding by the DFG via a Heisenberg professorship. M.R., R.B., and X.F. thank the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden (cfaed)” and EnhanceNano (No. 391979941). A.P.P. and A.Ru. thank the Cluster of Excellence "Advanced Imaging of Matter (AIM)" and Grupos Consolidados (IT1249-19). M.G. acknowledges funding by the H2020-MSCA-IF−2014 program under GA no. 658070 (2DNano).Peer reviewe

    Gating a single-molecule transistor with individual atoms

    Get PDF
    Transistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is sensitive to single electrons hopping via individual orbitals1, 2. Single-electron transport in molecular transistors has been previously studied using top-down approaches to gating, such as lithography and break junctions1, 3, 4, 5, 6, 7, 8, 9, 10, 11. But atomically precise control of the gate—which is crucial to transistor action at the smallest size scales—is not possible with these approaches. Here, we used individual charged atoms, manipulated by a scanning tunnelling microscope12, to create the electrical gates for a single-molecule transistor. This degree of control allowed us to tune the molecule into the regime of sequential single-electron tunnelling, albeit with a conductance gap more than one order of magnitude larger than observed previously8, 11, 13, 14. This unexpected behaviour arises from the existence of two different orientational conformations of the molecule, depending on its charge state. Our results show that strong coupling between these charge and conformational degrees of freedom leads to new behaviour beyond the established picture of single-electron transport in atomic-scale transistors

    The effect of Spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients:A randomized double-blinded clinical trial

    Get PDF
    OBJECTIVE: This study sought to investigate the effect of Spirulina on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease (NAFLD) patients. METHODS: This randomized, double‐blind clinical trial was performed on 46 NAFLD patients. Subjects were allocated to consume either Spirulina sauce or placebo, each 20 g/day for 8 weeks. Fatty liver grade, liver enzymes, anthropometric parameters, blood pressure, and serum lipids, glucose, insulin, malondialdehyde, and antioxidant capacity were assessed pre‐ and postintervention. RESULTS: Fatty liver grade was significantly different between the two groups. A significant change for ALT (alanine aminotransferase) and AST (aspartate aminotransferase) was seen between the two groups (p = .03 and .02, respectively), while ALP (alkaline phosphatase) serum levels were not significantly different within or between groups. Pertaining to glycemic profile, all variables, except HOMA‐IR, were not significantly different within or between groups. Finally, statistically significant changes were seen in both MDA (malondialdehyde) and TAC (total antioxidant capacity) among the groups (p = .04 and <.001, respectively). CONCLUSIONS: Spirulina may improve fatty liver grade by modifying liver enzymes, oxidative stress, and some lipid profiles; however, there was effect of Spirulina on anthropometric characteristics and blood pressure
    • 

    corecore