10 research outputs found

    Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma

    Get PDF
    Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment (TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed coordinated transitions between four TME states that were delineated based on the location and function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption was more advanced in DCIS patients that did not develop IBC, suggesting this process could be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these processes

    Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: Analysis of TBCRC 038 and RAHBT cohorts

    Get PDF
    Ductal carcinoma in situ; Tumor microenvironment; Whole genome sequencingCarcinoma ductal in situ; Microambiente tumoral; Secuenciaci贸n del genoma completoCarcinoma ductal in situ; Microambient tumoral; Seq眉enciaci贸 del genoma completDuctal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Translational Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts. We identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classifier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include proliferation, immune response, and metabolism. Distinct stromal expression patterns and immune cell compositions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved atlas of breast precancers, where complementary modalities can be directly compared and correlated with conventional pathology findings, disease states, and clinical outcome.This publication is part of the HTAN (Human Tumor Atlas Network) Consortium paper package. A list of HTAN members is available at humantumoratlas.org/htan-authors/. R01 CA185138-01 (E.S.H.); U2C CA-17-035 Pre-Cancer Atlas (PCA) Research Centers (E.S.H., R.B.W., C.M., K.P., G.A.C., K.O.); UO1 CA214183 (J.R.M.); DOD BC132057 (E.S.H., C.M.); BCRF 19-074 (E.S.H.); BCRF 19-028 (G.A.C.); PRECISION CRUK Grand Challenge (E.S.H.); R01CA193694 (R.B.W., G.A.C.), BCRF PPI-18-006 (R.B.W.). AEI RYC2019- 026576-I, "LaCaixa" Foundation LCF/PR/PR17/51120011 (J.A.S.). S.H.S. was supported by the Lundbeck Foundation (R288-2018-35) and the Danish Cancer Society (R229-A13616). K.E.H. was supported by a CIHR Banting Postdoctoral Fellowship. TBCRC 038 was conducted by the TBCRC, which receives major funding support from The Breast Cancer Research Foundation and Susan G. Komen. Some results in this paper are based upon data generated by the TCGA Research Network

    Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning

    Get PDF
    Understanding the spatial organization of tissues is of critical importance for both basic and translational research. While recent advances in tissue imaging are opening an exciting new window into the biology of human tissues, interpreting the data that they create is a significant computational challenge. Cell segmentation, the task of uniquely identifying each cell in an image, remains a substantial barrier for tissue imaging, as existing approaches are inaccurate or require a substantial amount of manual curation to yield useful results. Here, we addressed the problem of cell segmentation in tissue imaging data through large-scale data annotation and deep learning. We constructed TissueNet, an image dataset containing >1 million paired whole-cell and nuclear annotations for tissue images from nine organs and six imaging platforms. We created Mesmer, a deep learning-enabled segmentation algorithm trained on TissueNet that performs nuclear and whole-cell segmentation in tissue imaging data. We demonstrated that Mesmer has better speed and accuracy than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance for whole-cell segmentation. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We further showed that Mesmer could be adapted to harness cell lineage information present in highly multiplexed datasets. We used this enhanced version to quantify cell morphology changes during human gestation. All underlying code and models are released with permissive licenses as a community resource

    Modeling differentiation-state transitions linked to therapeutic escape in triple-negative breast cancer.

    No full text
    Drug resistance in breast cancer cell populations has been shown to arise through phenotypic transition of cancer cells to a drug-tolerant state, for example through epithelial-to-mesenchymal transition or transition to a cancer stem cell state. However, many breast tumors are a heterogeneous mixture of cell types with numerous epigenetic states in addition to stem-like and mesenchymal phenotypes, and the dynamic behavior of this heterogeneous mixture in response to drug treatment is not well-understood. Recently, we showed that plasticity between differentiation states, as identified with intracellular markers such as cytokeratins, is linked to resistance to specific targeted therapeutics. Understanding the dynamics of differentiation-state transitions in this context could facilitate the development of more effective treatments for cancers that exhibit phenotypic heterogeneity and plasticity. In this work, we develop computational models of a drug-treated, phenotypically heterogeneous triple-negative breast cancer (TNBC) cell line to elucidate the feasibility of differentiation-state transition as a mechanism for therapeutic escape in this tumor subtype. Specifically, we use modeling to predict the changes in differentiation-state transitions that underlie specific therapy-induced changes in differentiation-state marker expression that we recently observed in the HCC1143 cell line. We report several statistically significant therapy-induced changes in transition rates between basal, luminal, mesenchymal, and non-basal/non-luminal/non-mesenchymal differentiation states in HCC1143 cell populations. Moreover, we validate model predictions on cell division and cell death empirically, and we test our models on an independent data set. Overall, we demonstrate that changes in differentiation-state transition rates induced by targeted therapy can provoke distinct differentiation-state aggregations of drug-resistant cells, which may be fundamental to the design of improved therapeutic regimens for cancers with phenotypic heterogeneity

    Activation of PP2A and Inhibition of mTOR synergistically reduce MYC signaling and decrease tumor growth in pancreatic ductal adenocarcinoma

    Get PDF
    In cancer, kinases are often activated and phosphatases suppressed, leading to aberrant activation of signaling pathways driving cellular proliferation, survival, and therapeutic resistance. Although pancreatic ductal adenocarcinoma (PDA) has historically been refractory to kinase inhibition, therapeutic activation of phosphatases is emerging as a promising strategy to restore balance to these hyperactive signaling cascades. In this study, we hypothesized that phosphatase activation combined with kinase inhibition could deplete oncogenic survival signals to reduce tumor growth. We screened PDA cell lines for kinase inhibitors that could synergize with activation of protein phosphatase 2A (PP2A), a tumor suppressor phosphatase, and determined that activation of PP2A and inhibition of mTOR synergistically increase apoptosis and reduce oncogenic phenotypes in vitro and in vivo. This combination treatment resulted in suppression of AKT/mTOR signaling coupled with reduced expression of c-MYC, an oncoprotein implicated in tumor progression and therapeutic resistance. Forced expression of c-MYC or loss of PP2A B56伪, the specific PP2A subunit shown to negatively regulate c-MYC, increased resistance to mTOR inhibition. Conversely, decreased c-MYC expression increased the sensitivity of PDA cells to mTOR inhibition. Together, these studies demonstrate that combined targeting of PP2A and mTOR suppresses proliferative signaling and induces cell death and implicates this combination as a promising therapeutic strategy for patients with PDA

    Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer

    No full text
    Resistance to therapy can be driven by intratumoral heterogeneity. Here, the authors show that drug tolerant persistent cell populations emerge during treatment, and these emergent populations arise through epigenetically mediated cell state transitions rather than sub population selection
    corecore